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Abstract

This paper presents work in

progress on the Lyrebird frame-

work, consisting of a language

for specifying the programmer-

visible behaviour of a processor

and its associated devices, a tool

for automatically producing a fast

simulator, and a formal seman-

tic interpretation providing a ma-

chine model for use in an inter-

active theorem prover. Machine

specifications are modular, pro-

viding abstract interfaces and structural parameterization

(MMU-less processors, for example). Also presented is a

specific example: An instantiation for the ARM1136jf-s

core.

1 Introduction & Background

This work arose from the L4.verified [16] project that

provided a functional correctness proof for the seL4 mi-

crokernel [11, 12]. The result of the project was a proof

of correspondence between an abstract kernel specifica-

tion and a C language implementation executing on a ide-

alized ‘C machine’. The abstract and C models share

several simplifying assumptions about the underlying

machine: First that the kernel program is invariant, sec-

ond that privileged data structures are distinct from user-

visible memory and third that machine-management op-

erations (timer setup, TLB management, . . . ) are primi-

tive operations distinct from the ordinary instruction set.

The C model makes the additional assumption that the

runtime stack is unbounded and distinct from address-

able memory.

The above assumptions are all implicit: There is sim-

ply no way to express program update or stack address-

ing in the framework. Any further instantiation (in par-

ticular a more complete machine model) must respect

these assumptions to be acceptable. With the excep-

tion of machine-management, these assumptions are all

expressed as invariants on the execution state, which

must be preserved by implementation. The kernel model

makes several explicit assumptions about the machine,

which we have argued informally are sufficient to satisfy

the implicit assumptions we make in reasoning. These

are that no write by user-level code ever modifies kernel

data, and that no write, by user or kernel, ever modifies

the kernel program. We justify this in turn by showing

that the kernel data is never mapped to a user process,

and that the kernel program is only ever mapped read-

only. We need a formal model of the hardware that jus-

tifies that these precautions (correct mapping) ensure the

safety properties (no writes to kernel data or program)

and that this in turn implies that the kernel program is

invariant. We propose a stack of low-level virtual ma-

chines building from a detailed hardware model to allow

us to establish the desired properties in small steps.

The abstract-to-C simulation is formally verified and

thus correct, yet its application to the seL4 kernel (im-

plemented in C with small amounts of assembler) de-

pends on the faithfulness of the abstract C machine (with

opaque hardware manipulation calls) to the C runtime

environment with hardware calls implemented in assem-

bler. We need to show that the target machine (when

configured correctly) implements the ‘invariant program,

distinct privileged data’ abstract machine and that the

(assembler) machine-management stubs implement the

abstract machine operations. The validity of the proof

rests on the accuracy of the machine model.

Having an accurate machine model is certainly neces-

sary, yet it is by no means sufficient. In order to sup-

port such a large proof effort, the model needs to ef-

ficiently support the styles of reasoning that we apply,

and to dovetail into our higher-level notions of simula-

tion and refinement. The feasibility of the proof rests on

the ease of reasoning about the model.
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Finally, while the techniques employed may be

generic, the ultimate proof statement will be that seL4 is

correctly implemented on a specific machine (processor

architecture, revision, configuration, . . . ). There is the

temptation to target a machine amenable to reasoning,

but used rarely (or not at all) in practice, thus limiting the

real-word usefulness of the proof. At the other extreme,

it is too easy to target a specific machine that happens to

be available, with all its specific details and quirks and

again limit the proof’s usefulness. While for the sake

of concreteness, it is probably necessary to pin down

some details of the target (register width, hardware- vs.

software- walked page tables, . . . ), it would be preferable

to specify as little as possible about the underlying ma-

chine, and to write a generic proof that can be re-targeted

with minimal effort (automatically by preference) to re-

lated architectures. The usefulness of the proof rests on

the ease with which it can be instantiated (ported) to a

specific target.

To achieve this, we need a model of the hardware that

is sufficiently abstract to cover several machines, suffi-

ciently precise to allow a complete proof on a given ma-

chine, easily re-targetable and extensively validated. To

this end we present the Lyrebird specification language

together with a simulator generation tool and propose a

formal semantic interpretation. A particular specification

contains the details necessary to complete the proof for

a particular machine, and a stack of abstract virtual ma-

chines will provide an abstract hardware model to sup-

port the seL4 correctness proof. A new machine speci-

fication can be generated with modest effort by persons

unfamiliar with formal logic, and the model can be vali-

dated using the generated simulator.

There are conflicting demands on our machine model.

On the one hand, we need it to be precise, carefully con-

structed and well validated. On the other we don’t want

to tie ourselves to a particular machine; We want to port

the model as easily as we do the code. We also need the

simulator to be fast enough to be useful in development,

yet be accurately synchronized with our formal model;

We want to use the simulator to validate the model.

No existing technique meets all our requirements,

hence the need for this work. A formal model on

which we can reason is an absolute necessity, so we

might consider a model in a formal logic (in our case

Isabelle/HOL), however, constructing such a model re-

quires a good working knowledge of the logical formal-

ism; It would be preferable for the model to be written

by someone with an intimate knowledge of the hardware,

without requiring them to learn the logic.

The approach we have taken is to define a domain-

specific language, Lyrebird, built from a small set of

primitives (to which we will assign a formal interpre-

tation), that is easily compiled to give a fast, portable

simulator. The flexibility of the language comes from

its simplicity and carefully chosen primitives, not from a

broad set of specialized extensions. One great advantage

of this approach is that the model and the simulator are

synchronized by definition, as the model is simply the

semantic interpretation of the specification. In addition,

the generated simulator is completely portable and has

as simple an interface as possible, so that it can easily be

incorporated into larger simulations.

The Lyrebird framework was initially used to validate

the kernel API before it had been implemented in C,

and thus the initial model was for unprivileged execu-

tion only. We now propose to extend this framework to

provide the abstract machine stack to support the kernel

proof

This paper will present: The Lyrebird language (§2)

together with an sample CPU model, an example of

device modelling (§3), simulator generation (§4), for-

mal modelling and the abstract machine stack (§5), the

ARM1136jf-s instantiation (§6) and an overview of on-

going work (§7).

2 The Lyrebird Language

The Lyrebird specification language allows a precise,

compact description of an instruction set. All types

(§2.1) have a width and conversions are explicit. The

basic storage unit is the register (§2.2), from which com-

plex structures are built in a straightforward manner. Ex-

pressions are built with an expressive set of operators

(§2.3), all of which have a straightforward combinational

logic implementation.

Specification of behaviour is divided between pure,

side-effect-free functions (§2.4) and state-transforming

macros (§2.5) which are in turn built from imperative

fragments (§2.5). Decoding is expressed as a pure func-

tion of the machine state, and the behaviour of an individ-

ual instruction (§2.7) is given by an imperative fragment.

Duplication of effort is avoided, and terseness im-

proved by grouping instructions into classes (§2.8),

which generally mirror the decode tree. Instruction

classes define aliases (§2.6) for parameters common to

instructions e.g. register operands, and common frag-

ments of behaviour e.g. condition code updates.

Figure 1 gives the small, yet complete specification

of a simple RISC processor. It features universal con-

ditional execution (similar to ARM), multiple address-

ing modes and visible control registers, all of which are

complications arising in real processors. The following

discussion will refer to this example to illustrate the con-

structs presented.
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1 module vsr;

2

3 registerclass R { index_size 5; entries 32; size 32; }

4 register Instr { size 32; }

5

6 synonym SFR { PC= 31; SR= 30; }

7 synonym Gd { NV= 0b000; AL= 0b001; ZE= 0b010; NZ= 0b011; }

8

9 function getZ: int<32> SR -> bool SR[0]==1

10 function setZ: bool Z, int<32> SR -> int<32>

11 Z :: SR[31:1]++1 || not Z :: SR[31:1]++0

12 function check_guard: int<3> g, int<32> SR -> bool

13 g==Gd.NV :: false || g==Gd.AL :: true ||

14 g==Gd.ZE :: getZ(SR) || g==Gd.NZ :: not getZ(SR)

15

16 interface Memory { int<32> addr; int<32> data;

17 transaction Read out { addr out; data in; }

18 transaction Write out { addr out; data out; }}

19

20 init { register(R, SFR.PC)<- 0; }

21

22 cycle { Memory.Read[[register(R, SFR.PC), Instr]]; decode_execute VSR; }

23

24 instructionclass VSR {

25 guard= Instr[31:29]; opcode= Instr[28:23]; Ra= Instr[22:18]; Rb= Instr[17:13];

26

27 pre_exec { if(not check_guard(guard, register(R, SFR.SR))) { abort; } }

28 decode { opcode[5:1]==0b11111: LoadStore; otherwise: Arithmetic; } }

29

30 instructionclass Arithmetic {

31 I= Instr[12]; S= Instr[11]; Rc= Instr[10:6]; Immed= Instr[10:0];

32 op_1= register(R, Rb); op_2= I==0 :: register(R, Rc) || I==1 :: Immed sext 32;

33

34 post_exec {

35 if(S==1) {

36 register(R, SFR.SR)<- setZ(register(R, Ra)==0, register(R, SFR.SR)); }}

37 decode { opcode==0x00 : ADD; opcode==0x01 : SUB;

38 opcode==0x02 : AND; opcode==0x03 : OR; } }

39

40 instruction ADD { execute { register(R, Ra)<- op_2+op_1; } }

41 instruction SUB { execute { register(R, Ra)<- op_2-op_1; } }

42 instruction AND { execute { register(R, Ra)<- op_2&op_1; } }

43 instruction OR { execute { register(R, Ra)<- op_2|op_1; } }

44

45 instructionclass LoadStore {

46 offset= Instr[10:0]; address= register(R, Rb) + (offset sext 32);

47 decode { opcode[0]==0: LDR; opcode[1]==1: STR; } }

48

49 instruction LDR { execute { Memory.Read [[address, register(R, Ra)]]; } }

50 instruction STR { execute { Memory.Write[[address, register(R, Ra)]]; } }

Figure 1: Very Simple RISC Specification
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Typesetting Convention

In presenting language constructs, we will apply the fol-

lowing convention: variables are in italics, constants
in serif font, types in sans serif and keywords bold. In

addition, a dot (·) stands for a single missing lexical el-

ement and an ellipsis (. . .) for the missing portion of a

list.

2.1 Types

Figure 2: Hierarchy

All Lyrebird values are

strongly typed as one of the

following: Arbitrarily-sized

integers, int; fixed-width

integers, int〈n〉 (for n ∈ N
+)

and booleans, bool. Of these,

only int〈n〉 and bool are realizable (a valid final type

for an expression), and only int〈n〉 is implementable (a
valid final type for a register). Overloading is allowed

for built-in operators and is constrained by the type

hierarchy in figure 2 (int〈n〉 is a fixed-width integer of

as-yet-indeterminate width):

Type inference resolves the initial types of expres-

sion nodes to their final (realizable) types. Polymor-

phic operators have a more general initial type e.g.

+ : : int〈n〉, int〈n〉 → int〈n〉 and a relation on operand

types e.g. ++ : : int〈m〉, int〈n〉 → int〈m + n〉. Type an-
notations may be omitted where the correct type can be

inferred from context.

2.2 Registers

Registers are the basic unit of storage, declared ei-

ther globally (representing persistent state) or locally to

an imperative fragment (representing transient storage).

The syntax for global declarations (fig. 1, l. 3) is:

register R { size n; }

And for local declarations (fig. 4, l. 10):

register int〈n〉 R;

Globally, register classes (fig. 1, l. 3) are declared as fol-

lows:

registerclass C { index size i; entries e; sizen; }

A register class is a set of e registers of width n indexed

by x ∈ int〈i〉 with x < e ≤ 2i.

2.3 Operators & Expressions

A wide range of operators are available to build expres-

sions:

+,−, ∗, /,&, ¦,∧ : : int〈n〉, int〈n〉 → int〈n〉

%,≪,≫,≫ : : int〈n〉, int→ int〈n〉

++ : : int〈m〉, int〈n〉 → int〈m + n〉

−,∼ : : int〈n〉 → int〈n〉

[i :j] : : int〈n〉 → int〈j − i + 1 〉

<,>,≤,≥,==, != : : int〈n〉, int〈n〉 → bool

and,or : : bool, bool→ bool

! : : bool→ bool

sextn, zext n : : int〈m〉 → int〈n〉 wherem ≤ n

Of particular note are++ (bitwise concatenation), ·[· : ·]
(slice), ≫ (sign-preserving arithmetic shift) and sext

& zext (sign- and zero-extend). One fundamental op-

erator not covered above is the guarded option expres-

sion b1 : : e1‖b2 : : e2‖ . . . ‖ otherwise : : bo which eval-

uates to en if bn ∧ ¬
∨

n−1

i=1
bi and bo otherwise.

2.4 Functions

A function (fig. 1, l. 8) is defined by a tuple of input types

and labels, a result type and an expression:

functionF : τ1 l1, . . . , τn ln → τr e(l1, . . . , ln)

2.5 Fragments & Macros

There are two primitive imperative statements: reg-

ister transfer, r← e and abrupt termination, abort.

Register transfer (fig. 1, l. 17) stores the current re-

sult of expression e into the register named by r
and abrupt termination (fig. 1, l. 24) immediately ter-

minates the enclosing imperative fragment. Imper-

ative fragments are built from register transfers by

sequential composition, . . . ; . . . (fig. 1, l. 19); condi-

tional execution, if(b) {. . .} else {. . .} (fig. 1, l. 32)

and looping on a previously declared local register,

for(r from m to n) {. . .}.
Macros (fig. 4, l. 9) are declared with a set of label

bindings and a fragment:

macro M(τ1 l1, ·, τn ln) {. . .}

Labels can be declared as output labels by prefixing

with &. When a macro is instantiated (fig. 4, l. 13)

(M [[e1|r1, . . . , en|rn]]), each label is bound to either an

expression (for input labels) or a register (for output la-

bels). Semantically, a macro instantiation is equivalent to
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inserting the macro fragment with labels replaced (taking

care to avoid variable capture). These semantic macros

are superior to textual macros principally by providing

type checking and making input and output parameters

explicit. Their principal application is in avoiding dupli-

cation of boilerplate e.g. error checking.

2.6 Aliases

Aliases (fig. 1, l. 5) give a name to an expression and are

declared as n = e. The result of the expression is bound
early, at the alias statement. Aliases are inherited through

structural scopes and through the class hierarchy. Aliases

in an outer scope can be obscured by those in an inner

scope, but otherwise the semantics are SSA (static sin-

gle assignment). Their principle application is defining

instruction operands. The synonym keyword (fig. 1, l. 5)

declares a namespace to qualify alias labels.

2.7 Instructions

Instructions (fig. 1, l. 35) are the core of the behavioural

specification and consist of alias declarations together

with an imperative execute block:

instruction C







n = e ;
. . .
execute {. . .}







2.8 Classes

Instruction classes (fig. 1, l. 21) group instructions that

share a common decode path, operands or behaviour. A

class declaration consists of aliases, optional pre-execute

and post-execute blocks and a decode block.

instructionclass C























n = e ;
. . .
pre exec {. . .}
post exec {. . .}
decode {b1 : I1 ; . . .}























Where bi is a boolean expression and Ii is the name of

either an instruction or a class. The decode cases, bi : Ii
(fig. 1, l. 25), are interpreted as for the guarded choice

expression, determining the next branch in the decode

tree according to a predicate on the state. The pre- and

post-execute blocks modify any execute block reached

by decoding from this class: The pre-execute block is

prepended and the post- appended. This modification is

cumulative if several classes on the decode path specify

such blocks.

Instruction decoding is made fully explicit in the

model, to allow reasoning down to the level of the hard-

ware if desired, yet it can easily be abstracted by taking

instructions as the primitive machine operations, rather

than cycles.

2.9 Top-Level Behaviour

The top-level behaviour of the model is defined by the

cycle {. . .} (fig. 1, l. 19) and init {. . .} (fig. 1, l. 17)

blocks, specifying fragments implementing a single ma-

chine cycle and machine initialization, respectively. The

only events typically visible external to the model are

initialization, cycle and interface transactions, described

next.

2.10 External Interfaces

External interactions with memory, devices or other

CPUs are implemented as transactions over interfaces.

An interface (fig. 1, l. 14) defines a datapath and a set of

transactions (fig. 1, l. 15), each of which uses a datapath

element as either an input or an output.

interface I















τ1 n1 ;
. . .
transaction T {n1 in |out, . . .}
. . .















3 Modelling Devices

The Lyrebird language was originally designed with

the goal of specifying instruction set behaviour. Thanks

however to its regular structure, and focus on a few well-

understood primitive operations (e.g. register transfer),

it was easily applied to modelling both simple and rel-

atively complex devices. Figure 3 shows the specifica-

tion of a flat memory space, showing the flexibility of the

register class construct. Figure 4 show a simple paging

MMU driven by tables stored in the underlying memory.

This not only gives an example of the macro (§2.5) con-

struct, but despite its compactness captures many of the

more subtle complications of such a device (for example,

what happens when a write is made to a virtual address

corresponding to the table entry defining that same ad-

dress’ mapping? This model gives a definitive answer,

consistent with most real implementations).

These models also demonstrate the implementation of

interface transactions, and the structural parameteriza-

tion mentioned earlier. The CPU model could be instan-

tiated with flat memory model, or with a paging MMU

which is in turn instantiated on flat memory. We might

then proceed to show that if the MMU-endowedmachine

is initialized appropriately, with words [216,MemTop)
mapped to [0,MemTop− 216) and [0, 216) unmapped,

it is a faithful model of the flat memory machine with

MemTop′ = MemTop − 216. We could in the same
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1 module memory; init {} cycle {} parameter MemTop; // In 32-bit words

2

3 registerclass M { index_size 30; entries MemTop; size 32; }

4

5 interface CPU { int<30> addr; int<32> data;

6 transaction Read in { addr in; data out; }

7 transaction Write in { addr in; data in; }}

8

9 transaction CPU.Write { if(addr<MemTop) { register(M,addr)<- data; }}

10 transaction CPU.Read { data<- addr<MemTop :: register(M,addr) || otherwise :: 0; }

Figure 3: Flat Memory Specification

1 module mmu; init {} cycle {}

2

3 interface CPU { int<30> addr; int<32> data;

4 transaction Read in { addr in; data out; }

5 transaction Write in { addr in; data in; }}

6

7 interface Mem { int<30> addr; int<32> data;

8 transaction Read out { addr out; data in; }

9 transaction Write out { addr out; data out; }}

10

11 macro Walk(int<30> va,int<30> &pa) {

12 register int<32> table_entry; vpn= va[29:14];

13 Mem.Read[[vpn zext 30,table_entry]]; pa<- table_entry[29:14]++va[13:0]; }

14

15 transaction CPU.Read { register int<30> pa; %Walk(addr,pa); Mem.Read[[pa,data]]; }

16 transaction CPU.Write { register int<30> pa; %Walk(addr,pa); Mem.Write[[pa,data]]; }

Figure 4: Table-Driven MMU Specification

way show that a (von Neumann) machine with a uni-

fied instruction and data memory is a faithful model of

a (Harvard) machine with separate instruction memory,

if the MMU is initialized to map all instruction mem-

ory read-only. These are examples of a more general ap-

proach we hope to develop to allow the Lyrebird frame-

work to provide our abstract machine stack, an example

of which we will give in §7.

4 Generating a Simulator

The above language primitives have been carefully cho-

sen to allow straightforward generation of an architec-

tural simulator. The generator proceeds structurally over

the abstract syntax tree, producing an intermediate C99

model which is in turn processed by the host platform’s

native compiler. The initialization and cycle events, to-

gether with any inbound transactions are exported as C

procedures; Outbound transactions are exported as unre-

solved call references. The generated simulator module

is pure C99 and is completely standalone. In this man-

ner, the simulator module can easily be incorporated into

a larger system. As an example, the framework provides

automatically-generated Python bindings to exercise the

model as an external module.

Despite the simplistic generation, the simulator

achieves good performance (∼ 10MIPS on a recent desk-

top machine). There is nonetheless plenty of scope for

performance improvement, if desired.

As mentioned, the first application of the generated

simulator was to provide a user-level ARMv6 environ-

ment to exercise a pure Haskell implementation of the

seL4 kernel. [11] The integration was straightforward,

with transactions bound (via the GHC foreign function

interface) to stubs exported from the Haskell model.

5 Generating a Model

The principal novelty of the Lyrebird framework is that

in addition to producing a simulator, it can just as easily

be used to produce a formal model of the programmer-

visible architecture. The most straightforward approach,

and the one taken initially is to translate the specifi-

cation to a model in a formal language (in this case

Isabelle/HOL). This work is more fully described by

Tsai [22], who compared the generated model to a hand-

crafted one.

The downside of the translation approach is that the
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semantics it ascribes to the specification are implicit in

the translator, which is generally developed in a less rig-

orous manner, often in a scripting language (e.g. Python)

for convenience. While this approach is certainly flex-

ible and efficient (in programmer-hours), it introduces

another gap in the verification chain, precisely what we

wish to avoid. The goal is to validate the specification

carefully against the target machine (this being a gap that

may never be fully closed) and from the machine speci-

fication up to the system specification, leave no gaps. To

this end, it is desirable for the specification language to

be assigned a rigorous formal semantics, with as straight-

forward a translation as possible into a formal system

(again, Isabelle/HOL for our work) with a view to ver-

ifying the translation itself, if desired. This is the subject

of ongoing research, of which we will give a short sketch

here.

To begin, we define a machine by a state type S and

a set of valid programs P . Programs are interpreted as

state transformers with failure, and may refer to unbound

names. Thus for names in N , and values in V , the inter-

pretation function I has type:

I : P → (N ⇀ V )→ S → (S⊕ ⊥)

Programs are built from primitive operations using sev-

eral combinators: sequential composition, name binding

and conditional execution. The only primitive operation

in the base language is register transfer. The interpre-

tation of an instruction is a program on the underlying

machine, and decoding is a function D : S → P , from

state to program. The machine specification is thus inter-

preted as a set of programs (instructions) on an underly-

ing machine (whose only primitive operation is register

transfer), and a map from current machine state to one of

these programs (decoding). We can now treat the speci-

fied processor as a machine on the same state, its prim-

itive operations being its instructions, which are in turn

the programs (P ) of the underlying machine. Programs

built from these new primitives represent the processor’s

machine language, with the decoding details abstracted

(and the implicit assumption that the program is distinct

from the machine state). If we now incorporate the de-

coding interpretation we have a further machine, again

with a single primitive, cycle (or step), with interpreta-

tion:

I(Cycle) = λs. I
(

D(s)
)

(s)

These models will all be derived by interpretation of our

specification, and we can reason on any of the three lev-

els as desired. This is the method I propose to use to con-

struct the layered virtual machines, culminating in the

machine model required by the kernel.

6 The ARM model

The initial model produced using the Lyrebird frame-

work was of the unprivileged ARMv6 instruction set

with the exception of Thumbmode and FPU/VLIW/DSP

instructions. The CPU model is general enough to cover

any ARMv6 processor, but where concreteness was es-

sential we used the ARM1136jf-s core for reference. The

application of the model was to to provide early valida-

tion of the (Haskell model of the) seL4 kernel [11] by

allowing binary code to exercise the kernel interface via

syscall emulation.

The model has since been extended to include pipeline

effects, an abstract and a detailed MMU model and an

AVIC (interrupt controller), EPIT (timer) and UART

compatible with those of the Freescale i.MX31 SoC. Ex-

tending the model to include privileged instructions and

additional processor modes is an ongoing project.

7 Ongoing Work

With the language and simulation framework in a mature

state, there are numerous potential applications and fruit-

ful open questions. The most important ongoing work is

the development of a formal semantics (as sketched in

§5). Once such a semantic model is developed, its most

obvious application will be the verification of assem-

bly code, an important part of the ongoing L4.verified

project.

At least as important as assembly verification will be

establishing a concrete, formal machine model to justify

the abstractions underlying both the abstract and the C

model (§1). The anticipated approach is to construct lay-

ered abstract machines, building from the detailed hard-

ware model furnished by the specification together with

its semantics (single memory, low-level machine man-

agement) to the desired abstract model (isolated invariant

code, high-level machine-management primitives).

Less obvious, but equally important is the need to jus-

tify our verification condition for the kernel at the hard-

ware level. The existing kernel verification establishes

that the C implementation is behaviourally equivalent

to its specification, a significant and essential first step.

From the point of view of an application however, we

want to view the kernel as simply a part of the under-

lying system, providing an abstract machine with iso-

lated virtual address spaces and all hardware manage-

ment performed through the appropriate system calls. To

do so will require the semantics not only be composi-

tional (surely an automatic requirement) but support a

notion of abstraction and refinement (and modular com-

position) compatible with that in the higher proof layers.

The approach we propose is to phrase the desired be-

haviour as such an abstract machine, using the seman-
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Figure 5: Abstract machine stack

tic model provided by the Lyrebird specification together

with the abstract kernel model to prove that the underly-

ing machine (suitably abstracted as above) together with

the kernel implementation (in C with assembly) faith-

fully implements it. This is, in effect, a reflection of the

kernel semantics across the machine interface to a give a

user-level, rather than a kernel-level view of the system.

For the approaches suggested above to improve our

satisfaction with the overall verification, the model will

need to be carefully validated. At a minimum, the model

should be shown to be consistent with others in the litera-

ture. [13] This will present a challenge, requiring reason-

ing with models produced in related but distinct logical

formalisms (HOL4 & Isabelle/HOL).

The abstract machine stack that we propose is built

both from Lyrebird specifications and more abstract

specifications in HOL (e.g. the abstract kernel). Figure

5 shows the stack we propose to establish the invariant

code property. The underlying (von Neumann) machine

is extended with MMU routines and initialization to sim-

ulate a (Harvard) machine with an invariant program.

8 Related Work

There are many published formalizations of instruction

sets. Bowen presented a complete formal model of

the Motorola 6800 instruction set as early as 1987 [9].

Contemporary work includes that of Fox et. al. who

have published a formalization of the ARMv6 instruc-

tion set [13] together with a multiprocessor memory

model [4] and a Hoare logic for assembler [21]. The

VAMP [7] was the first formally specified processor to

be fully implemented. Approaches to instruction set

models have also been proposed in the typed assembly

language/proof-carrying code community [19, 3].

Lyrebird improves on existing formalisms by provid-

ing a specification language that is accessible to non-

specialists while retaining a clear formalism, and allow-

ing generation of flexible high-performance simulators.

Layered models are an established approach to build-

ing high-confidence systems. An example was devel-

oped for the VAX VMM project [18, 15]. This approach

was advocated and put into practice by the Verisoft

project [5, 10]. A memory layer for C was presented

by Tuch et. al. [24, 23] as part of the L4.verified project

and extended to handle virtual memory by Kolanski [17].

Lyrebird will allow us to extend this model down to the

hardware level.

The canonical hardware description languages are

VHDL [2] and Verilog [1]. These languages have several

disadvantages for the style of modelling Lyrebird allows:

They are large languages with steep learning curves and

they model the system at a low level. As a result of

their size, and having been developed prior to any for-

mal models [20] rather than in parallel, they do not have

a single natural semantic interpretation. SystemC [14]

aims to address these shortcomings by allowing higher-

level (‘system-level’) modelling. However, as SystemC

is embedded within C++, it fails to adequately address

the need for formalization (although steps in this direc-

tion have been proposed [25]). ArchC [6] is a modelling

language built on SystemC that offers a similar specifi-

cation style to Lyrebird but suffers from SystemC’s lack

of a formal basis. The M5 simulator [8] is portable to

new architectures via a description language that pro-

vided some of the initial inspiration for this work. Lyre-

bird improves on the M5 ISA description by eliminating

dependence on C/C++ code templates, instead describ-

ing all behaviour in the same language. Lyrebird will

improve on existing simulators by having a clear formal

interpretation.

9 Summary

We have presented the work to date, and work ongoing,

on the Lyrebird framework for machine modelling. The

specification language is simple, flexible and will be en-

dowed with a natural semantic interpretation; It has al-

ready been assigned a semantics by translation. We hope

to use this interpretation to establish a stack of virtual

machines that establish the assumptions necessary for

the seL4 correctness proof. The principal advantage of

this approach is that the model and simulator are derived

from a common specification, ensuring that they are con-

sistent, and that the simulator can be used to validate the

model, and hence the assumptions made by the kernel

correctness proof.
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