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Motivation

* The joys of driver development

* Drivers are hard to write
e ... and even harder to debug

* They often delay product delivery

e ... and are the most common source
of OS failures



Can We Fix I\Drivers?
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Can We Fix Drivers?

* Lots of research, but only limited practical
impact:
« SLAM

e User-level driver frameworks in Linux and
Windows

* Register description languages



We are going about it the wrong way!

* Driver as a C program:

1000's lines of code
Extensive use of bit-level arithmetic

Extensive use of pointers and dynamic memory
allocation

Event-driven logic
Concurrency




What Drivers Actually Do

* The device provides a service (e.g., storage or
communication)

» The OS wants to use the service

* The driver translates OS requests into device commands
(kind of like RPC)

« Every bit of every register must be read and written correctly and in the
right order

« Memory buffers must be allocated and formatted, and later recycled

* OS resources must be reserved for each operation (timers, physical
buffers, interrupts, locks, etc)

 This translation is tedious and error-prone, but largely
mechanical



What Drivers Don't Do

» Drivers rarely perform complex
computation and data transformation

* If they do, this functionality can be encapsulated
In a separate module



Perfect Target for Automation!

e Largely mechanical task
» Tedious and error-prone
* Determined by input specifications
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Proposal Overview

* Current driver development methodology is
beyond fixing

* WWe propose to re-think driver development
practices with the goal of achieving:

» Strong correctness guarantees
* Reduced development and maintenance effort

 Not a theoretical exercise!

* The goal is to synthesise and verify drivers for complex
real-world devices (network, storage, audio, etc.)
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Work Packages

 WP1 (University of Toronto, NICTA)

e Sequential synthesis
* WP2 (University of Colorado Boulder)

e Concurrent synthesis
 WP3 (Imperial College)

 Automatic verification
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Work Packages

Input specs
(sequennal
synthesis)
(Verlflcatlon & %

Concurrent Sequential
driver driver

WP2 (concurrent synthesis)
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Work Packages

* Work packages are largely

WP3 & nput specs Q;S%?I;:Eg inde pend ent
. + Individual WPs have the
[Ct E potential to produce
e et valuable scientific and

@ practical results

WP2 (concurrent synthesis)

* Together they have the
potential to solve the
drivers problem
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Work Package 1:
Guided Sequential Synthesis

17



Formal
OS interface
spec

Formal
device spec

.

driver.c

J

18



Where Do Specifications Come from?

A device spec can be as

Formal complex as the driver
OS interface o _
spec « Use existing device

specifications developed by
hardware designers
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Hardware Design Workflow

Informal specification J

High-level model

description

netlist
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Hardware Design Workflow

Kl_ow-level description: \

registers, gates, wires.

Informal specification

I * Cycle-accurate

* Precisely models internal
device architecture and

1 interfaces /
\ : Read cycle with 1 wait state :

High-level model
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Hardware Design Workflow
{ Informal specification ] * Captures external behaviour
* Abstracts away structure and
_ * Abstracts away the low-level
High-level model interface
. 7

timing

description {

— }

[ netlist ]
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C

river synthesis as controller synthesis

l OS requests = control objective
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Driver = controller
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send () - send a network
packet
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Driver synthesis as controller synthesis

l OS requests = control objective

@ R send () - send a network
Driver = controller DEIELE
\ J
Vol
/ device\

,J Packet has been sent
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Game theory

 Game theory

* Provides a theoretical framework for verification
and synthesis of reactive systems

* Provides a classification of games
« Complexity bounds for various types of games
 Algorithms for finding winning strategies
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Example: trivial network adapter

write(ctl,1) write(ctl,0)

V\ controllable transition

@ write(ctl,1)

send

uncontrollable transition @

write(dat,...)
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Computing the winning set

oW

write(ctl,0)

write(ctl,1)

@ write(ctl,1)
send
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Computing the winning set

§—

write(ctl,0)

write(ctl,1)

write(dat,...)

Cpre({done}) = {bsy} write(ctl,1)

send
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Computing the winning set

oW

write(ctl,0)

write(ctl,1)

write(ctl,1)

Cpre({done,bsy}) = {bsy,on}

write(dat,...)

Cpre({done}) = {bsy}

send
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Computing the winning set

—{r

write(ctl,0)

write(ctl,1)

Cpre({done,bsy,on}) =
{off,done,bsy,on}

write(ctl,1)

Cpre({done,bsy}) = {bsy,on}

write(dat,...)

Cpre({done}) = {bsy}

send
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OS specification

Game objective:
The driver must be in state 0
infinitely often
(aka Buchi objective)

write(ctl,0)

xmit send

xmit_complete
write(ctl,1)
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Game automaton

xmit @
ﬂ xmit_complete

write(ctl, 1) write(ctl,0write(ctl,1) write(ctl,0) Wwrite(ctl,1) write(ctl,0)
xmit
on
1 Xxmit_complete
write(dat,...) \ write(dat,... \ write(dat,...
xmit
@ write(ctl,1) wri*e(ctl,1 )
write(ctl,1)

xmit
@ xmit_complete
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Winning strategy

xmit

write(ctl,1)

write(dat,...)

write(ctl,1)

xmit_complete
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Challenges

1. State explosion
2. Support for DMA
3. Synthesis with imperfect information

34



Challenges: State Explosion

* Every bit in every device register doubles
the size of the system state space

e e.g., 2320 states in a simplified IDE controller
model

» Classical game theory algorithms do not
scale well
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Tackling State Explosion:
Predicate Abstraction

x (32 bits) - current device configuration

y (32 bits) - new configuration requested by the OS

Total state space: 2% states

Introducing predicate: x=y

* The predicate can be represented with a single boolean
variable (2 states)

* Naive abstraction algorithm reduces IDE state space to
248 states
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Tackling State Explosion:
Symbolic Algorithms

* Even after abstraction the state space is
too large to explore explicitly

 Symbolic data structures allow
representing and manipulating large state
spaces compactly

» Common symbolic representations:
* Binary Decision Diagrams (BDD)

- BDD encoding of abstracted IDE spec consists of
~3000 BDD nodes

« SAT formulas 37



Challenges: DMA

» Synthesising drivers for DMA-capable
devices

* The entire RAM is now part of the state
space
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Synthesis for DMA

1. Typed view of memory

DMA circular buffer:

OS request queue: > > | | | |

2. Predicates over in-memory data structures

ViZ i queueli] = buf ferli]
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Challenges: Imperfect Information

* The basic synthesis algorithm assumes
complete knowledge of device state

 |n reality, device-internal state is invisible to

the driver

« Status registers are used to determine (relevant parts
of) the state

r

driver

\

device

e
—

network
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Tackling Imperfect Information

* |In synthesis, we must reason about sets of
possible states rather than individual
states => further exponential state
explosion

* |n practice, only a few bits of unobservable
state are relevant to the driver

» Heuristically discover those bits and
perform subset construction only on them
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Is It Going to Work?

* NICTA & Intel have built a prototype
implementation of a driver synthesis tool
« Simplistic abstraction algorithm
e Symbolic algorithms

 Rudimentary support for DMA and partial
information

DML frontend
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Successfully synthesised drivers

Asix AX88772 . /
USB-to-Eth adapte/f

SD host controller
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Lessons Learned

* Automatic driver synthesis is possible

* High-level hardware models are suitable
inputs for driver synthesis

* Abstraction and symbolic algorithms are
the way to go
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Lessons Learned

 There are areas where human expertise is
essential:

* Functionality
e Correctness
« Readability
« Performance

* The "all or nothing” approach to synthesis
will not yield satisfactory drivers
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Don't Fire Your Driver Developers Yet!
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Guided Synthesis

 The user has complete control over
synthesised source code

e The user communicates their decisions to
the tool via source code

» User errors can lead to synthesis failures,
but not to an incorrect driver
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Guided Synthesis

send () {

}

receive(){

}

driver template

o
L3

Scenario 1: Fully Automatic Synthesis

synthesised driver
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Guided Synthesis
Scenario 2: Hybrid Approach

send () {

}

receive(){

}

empty driver template

o
L3

send () {

write(ctl, flags);

}

receive(){

}

partially
synthesised driver

49



Guided Synthesis
Scenario 2: Hybrid Approach

send () {

write(ctl,0);

}

receive(){

}

modified driver template

S

send () {

write(ctl, flags);

}

receive(){

}

partially
synthesised driver
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Guided Synthesis
Scenario 2: Hybrid Approach

send () {

write(ctl,0);

}

receive(){

}

o
L3

modified driver template

synthesised driver
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Guided Synthesis
Scenario 2: Hybrid Approach

send () {

write(ctl,0);

}

receive(){

}

o
L3

—

modified driver template %

t r
t md, snd)
}
receive(){
write(ctl,flags)
write(irqg_en,0xff)
write(cmd,rcv);

synthesised driver
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Guided Synthesis
Scenario 3: Verification

%

ﬁ

send () {
write(ctl,flags);
write(irq en, O0xff);
write(cmd,snd);

}

receive(){
write(ctl,flags);
write(irq en, 0xff);
write(cmd,rcv);

}

manually developed
driver

L 3% \/



Conclusions

« The promise of automatic device-driver
synthesis:

» correct-by-construction device drivers at a fraction
of the cost of manual development

« practical alternative to traditional driver
development

We thank Intel for the opportunity
to carry out this research!
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