
1

Automatic Synthesis of High-Assurance
Device Drivers

Leonid Ryzhyk
● Project Overview
● WP1: Guided Sequential Synthesis

2

Project members

● NICTA (Sydney, Australia)
● PI: Gernot Heiser

● University of Toronto
● Co-PI's: Michael Stumm, Leonid Ryzhyk

● University of Colorado Boulder
● PI: Pavol Cerny

● Imperial College London
● PI: Alastair Donaldson

3

Motivation

● The joys of driver development
● Drivers are hard to write
● … and even harder to debug
● They often delay product delivery
● … and are the most common source

of OS failures

4

Can We Fix Drivers?

The drivers
problem

Static analysis

Model checking

Runtime
verification

DSL's

Symbolic
verificationHardware

isolation

Software
isolation

5

Can We Fix Drivers?

● Lots of research, but only limited practical
impact:
● SLAM
● User-level driver frameworks in Linux and

Windows
● Register description languages

6

We are going about it the wrong way!

● Driver as a C program:
● 1000's lines of code
● Extensive use of bit-level arithmetic
● Extensive use of pointers and dynamic memory

allocation
● Event-driven logic
● Concurrency

7

What Drivers Actually Do

● The device provides a service (e.g., storage or
communication)

● The OS wants to use the service
● The driver translates OS requests into device commands

(kind of like RPC)
● Every bit of every register must be read and written correctly and in the

right order
● Memory buffers must be allocated and formatted, and later recycled
● OS resources must be reserved for each operation (timers, physical

buffers, interrupts, locks, etc)

● This translation is tedious and error-prone, but largely
mechanical

8

What Drivers Don't Do

● Drivers rarely perform complex
computation and data transformation
● If they do, this functionality can be encapsulated

in a separate module

9

Perfect Target for Automation!

● Largely mechanical task
● Tedious and error-prone
● Determined by input specifications

10

driver.c

OS interface
spec

device spec

11

Formal
OS interface

spec

Formal
device spec

driver.c

12

Formal
OS interface

spec

Formal
device spec

driver.c

13

Proposal Overview

● Current driver development methodology is
beyond fixing

● We propose to re-think driver development
practices with the goal of achieving:

● Strong correctness guarantees
● Reduced development and maintenance effort

● Not a theoretical exercise!
● The goal is to synthesise and verify drivers for complex

real-world devices (network, storage, audio, etc.)

14

Work Packages

● WP1 (University of Toronto, NICTA)
● Sequential synthesis

● WP2 (University of Colorado Boulder)
● Concurrent synthesis

● WP3 (Imperial College)
● Automatic verification

15

Work Packages

Input specs

Sequential
driver

Concurrent
driver

WP1
(sequential
synthesis)

WP2 (concurrent synthesis)

WP3
(verification)

16

Work Packages

Input specs

Sequential
driver

Concurrent
driver

WP1
(sequential
synthesis)

WP2 (concurrent synthesis)

WP3
(verification)

● Work packages are largely
independent

● Individual WPs have the
potential to produce
valuable scientific and
practical results

● Together they have the
potential to solve the
drivers problem

17

Work Package 1:
Guided Sequential Synthesis

18

Formal
OS interface

spec

Formal
device spec

driver.c

19

Where Do Specifications Come from?
● A device spec can be as

complex as the driver
● Use existing device

specifications developed by
hardware designers

Formal
OS interface

spec

Formal
device spec

driver.c

20

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

21

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

● Low-level description:
registers, gates, wires.

● Cycle-accurate

● Precisely models internal
device architecture and
interfaces

22

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

bus_write(u32 addr, u32 val)
{
 ...
}

● Captures external behaviour

● Abstracts away structure and
timing

● Abstracts away the low-level
interface

23

Driver synthesis as controller synthesis

Driver = controller

OS requests = control objective

device

send() - send a network
packet

24

Driver synthesis as controller synthesis

Driver = controller

OS requests = control objective

device

Packet has been sent

send() - send a network
packet

25

Game theory

● Game theory
● Provides a theoretical framework for verification

and synthesis of reactive systems
● Provides a classification of games
● Complexity bounds for various types of games
● Algorithms for finding winning strategies

26

Example: trivial network adapter

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)

controllable transition

uncontrollable transition

27

Computing the winning set

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)

GOAL

INIT

28

Computing the winning set

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)Cpre({done}) = {bsy}

GOAL

INIT

29

Computing the winning set

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)Cpre({done}) = {bsy}

Cpre({done,bsy}) = {bsy,on}

GOAL

INIT

30

Computing the winning set

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)Cpre({done}) = {bsy}

Cpre({done,bsy}) = {bsy,on}

Cpre({done,bsy,on}) =
 {off,done,bsy,on}

GOAL

INIT

31

OS specification

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)

0 1 2

xmit

xmit_complete

send

OS specification
Game objective:

The driver must be in state 0
infinitely often

(aka Büchi objective)

32

Game automaton

on
0

off
0

bsy
0

done
0

write(ctl,0)write(ctl,1)

write(dat,...)

write(ctl,1)

on
1

off
1

bsy
1

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)

on
2

off
2

bsy
2

done
2

write(ctl,0)write(ctl,1)

write(dat,...)

write(ctl,1)

xmit

xmit

xmit_complete

xmit_complete

xmit_complete
done

1

xmit

xmit

33

Winning strategy
off
0

done
0

on
1

off
1

bsy
1

write(ctl,1)

write(dat,...)

send

write(ctl,1)

done
2

xmit

xmit_complete
done

1

xmit

34

Challenges

1. State explosion

2. Support for DMA

3. Synthesis with imperfect information

35

Challenges: State Explosion

● Every bit in every device register doubles
the size of the system state space
● e.g., 2320 states in a simplified IDE controller

model

● Classical game theory algorithms do not
scale well

36

Tackling State Explosion:
Predicate Abstraction

● x (32 bits) - current device configuration

● y (32 bits) - new configuration requested by the OS
● Total state space: 264 states
● Introducing predicate: x=y
● The predicate can be represented with a single boolean

variable (2 states)
● Naive abstraction algorithm reduces IDE state space to

248 states

37

Tackling State Explosion:
Symbolic Algorithms

● Even after abstraction the state space is
too large to explore explicitly

● Symbolic data structures allow
representing and manipulating large state
spaces compactly

● Common symbolic representations:
● Binary Decision Diagrams (BDD)

– BDD encoding of abstracted IDE spec consists of
~3000 BDD nodes

● SAT formulas

38

Challenges: DMA

● Synthesising drivers for DMA-capable
devices

● The entire RAM is now part of the state
space

39

Synthesis for DMA

OS request queue:

DMA circular buffer:

1. Typed view of memory

2. Predicates over in-memory data structures

40

Challenges: Imperfect Information

● The basic synthesis algorithm assumes
complete knowledge of device state

● In reality, device-internal state is invisible to
the driver

● Status registers are used to determine (relevant parts
of) the state

device

ne
tw

o r
k

st
a

tu
s

re
g

is
t e

rs

driver

41

Tackling Imperfect Information

● In synthesis, we must reason about sets of
possible states rather than individual
states => further exponential state
explosion

● In practice, only a few bits of unobservable
state are relevant to the driver

● Heuristically discover those bits and
perform subset construction only on them

42

Is It Going to Work?

● NICTA & Intel have built a prototype
implementation of a driver synthesis tool
● Simplistic abstraction algorithm
● Symbolic algorithms
● Rudimentary support for DMA and partial

information
● DML frontend

43

Successfully synthesised drivers

Asix AX88772
USB-to-Eth adapter SD host controller

W5100 Eth shieldIDE disk controller

44

Lessons Learned

● Automatic driver synthesis is possible
● High-level hardware models are suitable

inputs for driver synthesis
● Abstraction and symbolic algorithms are

the way to go

45

Lessons Learned

● There are areas where human expertise is
essential:
● Functionality
● Correctness
● Readability
● Performance

● The “all or nothing” approach to synthesis
will not yield satisfactory drivers

46

Don't Fire Your Driver Developers Yet!

47

Guided Synthesis

● The user has complete control over
synthesised source code

● The user communicates their decisions to
the tool via source code

● User errors can lead to synthesis failures,
but not to an incorrect driver

48

Guided Synthesis
Scenario 1: Fully Automatic Synthesis

send(){
 ...
}

receive(){
 ...
}

driver template

send(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,snd);

}

receive(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,rcv);

}

synthesised driver

49

Guided Synthesis
Scenario 2: Hybrid Approach

send(){
 ...
}

receive(){
 ...
}

empty driver template

send(){
 write(ctl,flags);

 ...
}

receive(){
 ...
}

partially
synthesised driver

50

Guided Synthesis
Scenario 2: Hybrid Approach

send(){
 write(ctl,0);

 ...
}

receive(){
 ...
}

modified driver template

send(){
 write(ctl,flags);

 ...
}

receive(){
 ...
}

partially
synthesised driver

51

Guided Synthesis
Scenario 2: Hybrid Approach

send(){
 write(ctl,0);

 ...
}

receive(){
 ...
}

modified driver template synthesised driver

send(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,snd);

}

receive(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,rcv);

}

52

Guided Synthesis
Scenario 2: Hybrid Approach

send(){
 write(ctl,0);

}

receive(){
 ...
}

modified driver template
synthesised driver

send(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,snd);

}

receive(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,rcv);

}

53

Guided Synthesis
Scenario 3: Verification

manually developed
driver

send(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,snd);

}

receive(){
 write(ctl,flags);
 write(irq_en,0xff);
 write(cmd,rcv);

}

√

54

Conclusions

● The promise of automatic device-driver
synthesis:
● correct-by-construction device drivers at a fraction

of the cost of manual development
● practical alternative to traditional driver

development

We thank Intel for the opportunity
to carry out this research!

