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Device Drivers
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Motivation

● The joys of driver development
● Drivers are hard to write
● … and even harder to debug
● They often delay product delivery
● … and are the most common source 

of OS failures
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Can We Fix Drivers?

The drivers
problem

Static analysis

Model checking

Runtime
verification

DSL's

Symbolic
verificationHardware

isolation

Software
isolation
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Can We Fix Drivers?

● Lots of research, but only limited practical 
impact:
● SLAM
● User-level driver frameworks in Linux and 

Windows
● Register description languages
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We are going about it the wrong way!

● Driver as a C program:
● 1000's lines of code
● Extensive use of bit-level arithmetic
● Extensive use of pointers and dynamic memory 

allocation
● Event-driven logic
● Concurrency
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What Drivers Actually Do

● The device provides a service (e.g., storage or 
communication)

● The OS wants to use the service
● The driver translates OS requests into device commands 

(kind of like RPC)
● Every bit of every register must be read and written correctly and in the 

right order
● Memory buffers must be allocated and formatted, and later recycled
● OS resources must be reserved for each operation (timers, physical 

buffers, interrupts, locks, etc)

● This translation is tedious and error-prone, but largely 
mechanical
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What Drivers Don't Do

● Drivers rarely perform complex 
computation and data transformation
● If they do, this functionality can be encapsulated 

in a separate module
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Perfect Target for Automation!

● Largely mechanical task
● Tedious and error-prone
● Determined by input specifications
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driver.c

OS interface
spec

device spec
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Formal
OS interface

spec

Formal
device spec

driver.c
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Formal
OS interface

spec

Formal
device spec

driver.c
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Proposal Overview

● Current driver development methodology is 
beyond fixing

● We propose to re-think driver development 
practices with the goal of achieving:

● Strong correctness guarantees
● Reduced development and maintenance effort

● Not a theoretical exercise!
● The goal is to synthesise and verify drivers for complex 

real-world devices (network, storage, audio, etc.) 
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Work Packages

● WP1 (University of Toronto, NICTA)
● Sequential synthesis

● WP2 (University of Colorado Boulder)
● Concurrent synthesis

● WP3 (Imperial College)
● Automatic verification
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Work Packages

Input specs

Sequential
driver

Concurrent
driver

WP1
(sequential
synthesis)

WP2 (concurrent synthesis)

WP3
(verification)
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Work Packages

Input specs

Sequential
driver

Concurrent
driver

WP1
(sequential
synthesis)

WP2 (concurrent synthesis)

WP3
(verification)

● Work packages are largely 
independent

● Individual WPs have the 
potential to produce 
valuable scientific and 
practical results

● Together they have the 
potential to solve the 
drivers problem
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Work Package 1:
Guided Sequential Synthesis
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Formal
OS interface

spec

Formal
device spec

driver.c
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Where Do Specifications Come from?
● A device spec can be as 

complex as the driver
● Use existing device 

specifications developed by 
hardware designers

Formal
OS interface

spec

Formal
device spec

driver.c



20

Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist
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Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

● Low-level description: 
registers, gates, wires.

● Cycle-accurate

● Precisely models internal 
device architecture and 
interfaces
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Hardware Design Workflow

Informal specification

High-level model

Register-transfer-level
description

netlist

bus_write(u32 addr, u32 val) 
{
  ...
}

● Captures external behaviour

● Abstracts away structure and 
timing

● Abstracts away the low-level 
interface
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Driver synthesis as controller synthesis

Driver = controller

OS requests = control objective

device

send() - send a network
packet
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Driver synthesis as controller synthesis

Driver = controller

OS requests = control objective

device

Packet has been sent

send() - send a network
packet
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Game theory

● Game theory
● Provides a theoretical framework for verification 

and synthesis of reactive systems
● Provides a classification of games
● Complexity bounds for various types of games
● Algorithms for finding winning strategies
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Example: trivial network adapter

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)

controllable transition

uncontrollable transition
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Computing the winning set

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)

GOAL

INIT
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Computing the winning set

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)Cpre({done}) = {bsy}

GOAL

INIT
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Computing the winning set

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)Cpre({done}) = {bsy}

Cpre({done,bsy}) = {bsy,on}

GOAL

INIT
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Computing the winning set

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)Cpre({done}) = {bsy}

Cpre({done,bsy}) = {bsy,on}

Cpre({done,bsy,on}) = 
         {off,done,bsy,on}

GOAL

INIT
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OS specification

on

off

bsy

done

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)

0 1 2

xmit

xmit_complete

send

OS specification
Game objective:

The driver must be in state 0 
infinitely often 

(aka Büchi objective)
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Game automaton

on
0

off
0

bsy
0

done
0

write(ctl,0)write(ctl,1)

write(dat,...)

write(ctl,1)

on
1

off
1

bsy
1

write(ctl,0)write(ctl,1)

write(dat,...)

send

write(ctl,1)

on
2

off
2

bsy
2

done
2

write(ctl,0)write(ctl,1)

write(dat,...)

write(ctl,1)

xmit

xmit

xmit_complete

xmit_complete

xmit_complete
done

1

xmit

xmit
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Winning strategy
off
0

done
0

on
1

off
1

bsy
1

write(ctl,1)

write(dat,...)

send

write(ctl,1)

done
2

xmit

xmit_complete
done

1

xmit
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Challenges

1. State explosion

2. Support for DMA

3. Synthesis with imperfect information
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Challenges: State Explosion

● Every bit in every device register doubles 
the size of the system state space
● e.g., 2320  states in a simplified IDE controller 

model

● Classical game theory algorithms do not 
scale well
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Tackling State Explosion: 
Predicate Abstraction

●  x     (32 bits)   - current device configuration

● y (32 bits) - new configuration requested by the OS 
● Total state space: 264 states
● Introducing predicate: x=y
● The predicate can be represented with a single boolean 

variable (2 states)
● Naive abstraction algorithm reduces IDE state space to 

248 states
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Tackling State Explosion: 
Symbolic Algorithms

● Even after abstraction the state space is 
too large to explore explicitly

● Symbolic data structures allow 
representing and manipulating large state 
spaces compactly

● Common symbolic representations:
● Binary Decision Diagrams (BDD)

– BDD encoding of abstracted IDE spec consists of 
~3000 BDD nodes

● SAT formulas
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Challenges: DMA

● Synthesising drivers for DMA-capable 
devices

● The entire RAM is now part of the state 
space
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Synthesis for DMA

OS request queue:

DMA circular buffer:

1. Typed view of memory

2. Predicates over in-memory data structures
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Challenges: Imperfect Information

● The basic synthesis algorithm assumes 
complete knowledge of device state

● In reality, device-internal state is invisible to 
the driver

● Status registers are used to determine (relevant parts 
of) the state

device

ne
tw
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driver
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Tackling Imperfect Information

● In synthesis, we must reason about sets of 
possible states rather than individual 
states => further exponential state 
explosion

● In practice, only a few bits of unobservable 
state are relevant to the driver

● Heuristically discover those bits and 
perform subset construction only on them 
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Is It Going to Work?

● NICTA & Intel have built a prototype 
implementation of a driver synthesis tool
● Simplistic abstraction algorithm
● Symbolic algorithms
● Rudimentary support for DMA and partial 

information
● DML frontend
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Successfully synthesised drivers

Asix AX88772 
USB-to-Eth adapter SD host controller

W5100 Eth shieldIDE disk controller
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Lessons Learned

● Automatic driver synthesis is possible
● High-level hardware models are suitable 

inputs for driver synthesis
● Abstraction and symbolic algorithms are 

the way to go
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Lessons Learned

● There are areas where human expertise is 
essential:
● Functionality
● Correctness
● Readability
● Performance

● The “all or nothing” approach to synthesis 
will not yield satisfactory drivers
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Don't Fire Your Driver Developers Yet!
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Guided Synthesis

● The user has complete control over 
synthesised source code

● The user communicates their decisions to 
the tool via source code

● User errors can lead to synthesis failures, 
but not to an incorrect driver
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Guided Synthesis
Scenario 1: Fully Automatic Synthesis

send(){
    ...
}

receive(){
    ...
}

driver template

send(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,snd);

}

receive(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,rcv);

}

synthesised driver
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Guided Synthesis
Scenario 2: Hybrid Approach

send(){
    ...
}

receive(){
    ...
}

empty driver template

send(){   
    write(ctl,flags);

    ...
}

receive(){
  ...
}

partially
synthesised driver
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Guided Synthesis
Scenario 2: Hybrid Approach

send(){
  write(ctl,0);

  ...
}

receive(){
  ...
}

modified driver template

send(){   
    write(ctl,flags);

    ...
}

receive(){
  ...
}

partially
synthesised driver
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Guided Synthesis
Scenario 2: Hybrid Approach

send(){
  write(ctl,0);

  ...
}

receive(){
  ...
}

modified driver template synthesised driver

send(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,snd);

}

receive(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,rcv);

}
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Guided Synthesis
Scenario 2: Hybrid Approach

send(){
  write(ctl,0);

}

receive(){
    ...
}

modified driver template
synthesised driver

send(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,snd);

}

receive(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,rcv);

}
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Guided Synthesis
Scenario 3: Verification

manually developed 
driver

send(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,snd);

}

receive(){
    write(ctl,flags);
    write(irq_en,0xff);
    write(cmd,rcv);

}

√
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Conclusions

● The promise of automatic device-driver 
synthesis:
● correct-by-construction device drivers at a fraction 

of the cost of manual development
● practical alternative to traditional driver 

development

We thank Intel for the opportunity
to carry out this research!


