o . @] UNIVERSITY OF
I. 5

o J TORONTO
NICTA

Automatic Synthesis of High-Assurance
Device Drivers

Leonid Ryzhyk

* Project Overview
* WP1: Guided Sequential Synthesis

Project members

NICTA (Sydney, Australia)

* Pl: Gernot Heiser
University of Toronto
e Co-Pl's: Michael Stumm, Leonid Ryzhyk

University of Colorado Boulder
* Pl: Pavol Cerny

Imperial College London

 PI: Alastair Donaldson

Motivation

* The joys of driver development

* Drivers are hard to write
e ... and even harder to debug

* They often delay product delivery

e ... and are the most common source
of OS failures

Can We Fix I\Drivers?
V7

\\// __‘_9/
\—

\ s

NS Model checking ~
Static analysis\ ' 28

\

Runtime
/ verification

N _

9\— The drivers

N — problem
Software \
Isolation

\\ / N

~) Symbolic
& Hardware 9 verification
= § DSL's

S iIsolation

4

Can We Fix Drivers?

* Lots of research, but only limited practical
impact:
« SLAM

e User-level driver frameworks in Linux and
Windows

* Register description languages

We are going about it the wrong way!

* Driver as a C program:

1000's lines of code
Extensive use of bit-level arithmetic

Extensive use of pointers and dynamic memory
allocation

Event-driven logic
Concurrency

What Drivers Actually Do

* The device provides a service (e.g., storage or
communication)

» The OS wants to use the service

* The driver translates OS requests into device commands
(kind of like RPC)

« Every bit of every register must be read and written correctly and in the
right order

« Memory buffers must be allocated and formatted, and later recycled

* OS resources must be reserved for each operation (timers, physical
buffers, interrupts, locks, etc)

 This translation is tedious and error-prone, but largely
mechanical

What Drivers Don't Do

» Drivers rarely perform complex
computation and data transformation

* If they do, this functionality can be encapsulated
In a separate module

Perfect Target for Automation!

e Largely mechanical task
» Tedious and error-prone
* Determined by input specifications

OS interface
spec

device spec

\

driver.c

>

J

10

Formal
OS interface
spec

Formal
device spec

\

driver.c

>

J

11

Formal
OS interface
spec

Formal
device spec

.

driver.c

J

12

Proposal Overview

* Current driver development methodology is
beyond fixing

* WWe propose to re-think driver development
practices with the goal of achieving:

» Strong correctness guarantees
* Reduced development and maintenance effort

 Not a theoretical exercise!

* The goal is to synthesise and verify drivers for complex
real-world devices (network, storage, audio, etc.)

13

Work Packages

 WP1 (University of Toronto, NICTA)

e Sequential synthesis
* WP2 (University of Colorado Boulder)

e Concurrent synthesis
 WP3 (Imperial College)

 Automatic verification

14

Work Packages

Input specs
(sequennal
synthesis)
(Verlflcatlon & %

Concurrent Sequential
driver driver

WP2 (concurrent synthesis)

15

Work Packages

* Work packages are largely

WP3 & nput specs Q;S%?I;:Eg inde pend ent
. + Individual WPs have the
[Ct E potential to produce
e et valuable scientific and

@ practical results

WP2 (concurrent synthesis)

* Together they have the
potential to solve the
drivers problem

16

Work Package 1:
Guided Sequential Synthesis

17

Formal
OS interface
spec

Formal
device spec

.

driver.c

J

18

Where Do Specifications Come from?

A device spec can be as

Formal complex as the driver
OS interface o _
spec « Use existing device

specifications developed by
hardware designers

(")

.Q.o

driver.c
Q \. J

Formal
device spec

Hardware Design Workflow

Informal specification J

High-level model

description

netlist

[
[]
[Registertransfer-leve]
[]

20

Hardware Design Workflow

Kl_ow-level description: \

registers, gates, wires.

Informal specification

I * Cycle-accurate

* Precisely models internal
device architecture and

1 interfaces /
\ : Read cycle with 1 wait state :

High-level model

— N N C N)

1 Ty gk T2 - Ts
Register-transfer-level J{_VF—/_VF—’(_*—’!_
description =
) ADDRESS)(Memory address to be read X
To é_ﬁ|
@ DATA * Data)(
=g =T _ijﬁ IL;
AD B
: 7.
netlist ;j“ L
WAIT \ / |

Time —=

Hardware Design Workflow
{ Informal specification] * Captures external behaviour
* Abstracts away structure and
_ * Abstracts away the low-level
High-level model interface
. 7

timing

description {

— }

[netlist]
22

C

river synthesis as controller synthesis

l OS requests = control objective

(")

Driver = controller

\. J

v |

/ device\

send () - send a network
packet

23

Driver synthesis as controller synthesis

l OS requests = control objective

@ R send () - send a network
Driver = controller DEIELE
\ J
Vol
/ device\

,J Packet has been sent

24

Game theory

 Game theory

* Provides a theoretical framework for verification
and synthesis of reactive systems

* Provides a classification of games
« Complexity bounds for various types of games
 Algorithms for finding winning strategies

25

Example: trivial network adapter

write(ctl,1) write(ctl,0)

V\ controllable transition

@ write(ctl,1)

send

uncontrollable transition @

write(dat,...)

26

Computing the winning set

oW

write(ctl,0)

write(ctl,1)

@ write(ctl,1)
send

27

Computing the winning set

§—

write(ctl,0)

write(ctl,1)

write(dat,...)

Cpre({done}) = {bsy} write(ctl,1)

send

28

Computing the winning set

oW

write(ctl,0)

write(ctl,1)

write(ctl,1)

Cpre({done,bsy}) = {bsy,on}

write(dat,...)

Cpre({done}) = {bsy}

send

29

Computing the winning set

—{r

write(ctl,0)

write(ctl,1)

Cpre({done,bsy,on}) =
{off,done,bsy,on}

write(ctl,1)

Cpre({done,bsy}) = {bsy,on}

write(dat,...)

Cpre({done}) = {bsy}

send

30

OS specification

Game objective:
The driver must be in state 0
infinitely often
(aka Buchi objective)

write(ctl,0)

xmit send

xmit_complete
write(ctl,1)

31

Game automaton

xmit @
ﬂ xmit_complete

write(ctl, 1) write(ctl,0write(ctl,1) write(ctl,0) Wwrite(ctl,1) write(ctl,0)
xmit
on
1 Xxmit_complete
write(dat,...) \ write(dat,... \ write(dat,...
xmit
@ write(ctl,1) wri*e(ctl,1)
write(ctl,1)

xmit
@ xmit_complete

32

Winning strategy

xmit

write(ctl,1)

write(dat,...)

write(ctl,1)

xmit_complete

33

Challenges

1. State explosion
2. Support for DMA
3. Synthesis with imperfect information

34

Challenges: State Explosion

* Every bit in every device register doubles
the size of the system state space

e e.g., 2320 states in a simplified IDE controller
model

» Classical game theory algorithms do not
scale well

35

Tackling State Explosion:
Predicate Abstraction

x (32 bits) - current device configuration

y (32 bits) - new configuration requested by the OS

Total state space: 2% states

Introducing predicate: x=y

* The predicate can be represented with a single boolean
variable (2 states)

* Naive abstraction algorithm reduces IDE state space to
248 states

36

Tackling State Explosion:
Symbolic Algorithms

* Even after abstraction the state space is
too large to explore explicitly

 Symbolic data structures allow
representing and manipulating large state
spaces compactly

» Common symbolic representations:
* Binary Decision Diagrams (BDD)

- BDD encoding of abstracted IDE spec consists of
~3000 BDD nodes

« SAT formulas 37

Challenges: DMA

» Synthesising drivers for DMA-capable
devices

* The entire RAM is now part of the state
space

38

Synthesis for DMA

1. Typed view of memory

DMA circular buffer:

OS request queue: > > | | | |

2. Predicates over in-memory data structures

ViZ i queueli] = buf ferli]

39

Challenges: Imperfect Information

* The basic synthesis algorithm assumes
complete knowledge of device state

 |n reality, device-internal state is invisible to

the driver

« Status registers are used to determine (relevant parts
of) the state

r

driver

\

device

e
—

network

40

Tackling Imperfect Information

* |In synthesis, we must reason about sets of
possible states rather than individual
states => further exponential state
explosion

* |n practice, only a few bits of unobservable
state are relevant to the driver

» Heuristically discover those bits and
perform subset construction only on them

41

Is It Going to Work?

* NICTA & Intel have built a prototype
implementation of a driver synthesis tool
« Simplistic abstraction algorithm
e Symbolic algorithms

 Rudimentary support for DMA and partial
information

DML frontend

42

Successfully synthesised drivers

Asix AX88772 . /
USB-to-Eth adapte/f

SD host controller

43

Lessons Learned

* Automatic driver synthesis is possible

* High-level hardware models are suitable
inputs for driver synthesis

* Abstraction and symbolic algorithms are
the way to go

44

Lessons Learned

 There are areas where human expertise is
essential:

* Functionality
e Correctness
« Readability
« Performance

* The "all or nothing” approach to synthesis
will not yield satisfactory drivers

45

Don't Fire Your Driver Developers Yet!

46

Guided Synthesis

 The user has complete control over
synthesised source code

e The user communicates their decisions to
the tool via source code

» User errors can lead to synthesis failures,
but not to an incorrect driver

47

Guided Synthesis

send () {

}

receive(){

}

driver template

o
L3

Scenario 1: Fully Automatic Synthesis

synthesised driver

48

Guided Synthesis
Scenario 2: Hybrid Approach

send () {

}

receive(){

}

empty driver template

o
L3

send () {

write(ctl, flags);

}

receive(){

}

partially
synthesised driver

49

Guided Synthesis
Scenario 2: Hybrid Approach

send () {

write(ctl,0);

}

receive(){

}

modified driver template

S

send () {

write(ctl, flags);

}

receive(){

}

partially
synthesised driver

50

Guided Synthesis
Scenario 2: Hybrid Approach

send () {

write(ctl,0);

}

receive(){

}

o
L3

modified driver template

synthesised driver

51

Guided Synthesis
Scenario 2: Hybrid Approach

send () {

write(ctl,0);

}

receive(){

}

o
L3

—

modified driver template %

t r
t md, snd)
}
receive(){
write(ctl,flags)
write(irqg_en,0xff)
write(cmd,rcv);

synthesised driver

52

Guided Synthesis
Scenario 3: Verification

%

ﬁ

send () {
write(ctl,flags);
write(irq en, O0xff);
write(cmd,snd);

}

receive(){
write(ctl,flags);
write(irq en, 0xff);
write(cmd,rcv);

}

manually developed
driver

L 3% \/

Conclusions

« The promise of automatic device-driver
synthesis:

» correct-by-construction device drivers at a fraction
of the cost of manual development

« practical alternative to traditional driver
development

We thank Intel for the opportunity
to carry out this research!

54

