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No leaks!
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Using confidentiality-preserving refinement
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Our contributions

Goal

Prove a compiler preserves proofs of
confidentiality — in an interactive theorem prover!

Results
1. Decomposition principle 2. Verified compiler
for confidentiality-preserving While-language to RISC-style

refinement assembly \
= | T0 | (Technique) (Proof-of-concept
] l @ , for technique)

(Formalisation: https://covern.org/itpl9.html)
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1. Multiple moving parts ,
(well-synchronised) Doesn't leak secrets

¢ V4 (storage channels)
Concurrent value-dependent|information-flow security

2. Mixed-sensitivity reuse |3. Compositionally! Confidentiality

(of devices, space, etc.) (per-thread effort)
|

Beaumont et al.

(ACSAC’16)
Example
(DSTG + Data61 collaboration)
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Proof effort comparison
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Refinement example (excerpt) from CSF’16 N

branch ~—

N on secret
if A #0 then

x =1y

else

fi

B —
Abstract program

—a
then

skip;

skip;

reg0 := vy;
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else

fi

B —
Concrete program
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Proof effort comparison
Refinement example (excerpt) from CSF’16

branch ~—

N on secret
if A #0 then

x =1y

else

fi

B —
Abstract program

——

padding
to prevent
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fi
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Proof effort comparison ém @
Refinement example (excerpt) from CSF’16 N
branch —" | o
( on secret padding
- then to prevent
timing leak
T:i=1y
else
fi
fi
-_* -—*
Abstract program Concrete program
o 44% shorter proof of secure refinement
(-3.6K to ~2K lines of Isabelle/HOL proofs) &P formalisation artifact:

https://covern.org/itpl9.html
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Our contributions

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results

1. Decomposition principle

for confidentiality-preserving
refinement
% Proof effort

oy
[ &

il almost halved!
] l _ @ , (Technique)
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Our contributions

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results
2. Verified compiler
While-language to RISC-style
assembly \
E (Proof-of-concept
for techmque
Impact

1st such proofs carried to assembly-level model by compller
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Verified compiler
Overview

An Isabelle/HOL primrec function

e eTEEsssssssEEEs--
1

'While (Imperative)i . RISC (Assembly)
1 Seq (i.e. cy;; Cy) : : Loadrv
. Assign (i.e.vee) : Storevr
y Ifeci o Jmp | E
. Whileec ! Jzlr :
. Skip : Nop '

(Formalisation: https://covern.org/itpl9.html)
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(Based on: B

Overview Tedesco et al. CSF’16) .~
An Isabelle/HOL primrec function &

'While (Imperative)! ' RISC (Assembly) |

I Seq (i.e. ¢y :: Cy) : E loadrv

. Assign (i.e.vee) ! ' Storevr

y Ifeci o Jmp | :

. Whileec ! JzIr :

»  Skip : Nop :

(Formalisation: https://covern.org/itpl9.html)
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 Proof approach: ~7K lines of Isabelle/HOL script
e Prevents data races on shared memory
e Knows when safe to optimise reads
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Verified compiler
Proof approach

(Formalisation: https://covern.org/itpl9.html)
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Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

(Formalisation: https://covern.org/itpl9.html)
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Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.g. R cases for if-conditional

If e c; ¢

reac v

e Jizr] « |Jmpl C, RTSC

L ee—

(Formalisation: https://covern.org/itpl9.html)
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Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

If e C1 C,y

reﬁl Jzr H—LJ‘& Jmp Co
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Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

If e & € C, C,
S 3
e [Jzr H’Tclr& Jmpl c,
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Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

-
Ife » 7° C, C,

H:%t]:1 Jz1 FE Jmm
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Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)
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\I H:1er| . [me] &
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Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

Fal
'es aise C1 C2

FIZLH erliiilmﬁﬁ
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Verified compiler oy o
Proof approach E /

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

If e C4 C,
‘ et]:Ai Jzr IL-jEJ:# Jmp C,
 Theorem: R (for B, with J) While
is a secure refinement ﬂ

RISC

(Formalisation: https://covern.org/itpl9.html)
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Verified compiler

(Based on:

Overview Tedesco et al. CSF’16)

An Isabelle/HOL primrec function &
'While (Imperative)! I RISC (Assembly)
I Seq (i.e. ¢y :: Cy) : E loadrv
. Assign (i.e.vee) ! : Storevr
y Ifeci o Jmp | :
» While e c ! . JzIr :
} Skip ! : Nop :

 Proof approach: ~7K lines of Isabelle/HOL script

(Formalisation: https://covern.org/itpl9.html)

14 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray




[ ] [ ] [ ] /
Verified compiler Iy
] (Based on: b1
Overview Tedesco et al. CSF’16) N .~
An Isabelle/HOL primrec function &
{While (Imperative): i RISC (Assembly) !
Seq (i.e. ¢1 ;; C3) : E Load r v
Assign (i.e.v e e) ! ' Store v r

Ifec;C, Jmp |
While e ¢ Jzlr
Nop

Skip

« Application: 2-thread input-handling model
of Cross Domain Desktop Compositor

(Formalisation: https://covern.org/itpl9.html)
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Verified compiler oy o
Application: CDDC input-handling model E /

e EEEEEEERERRREm - FrEEEEEEEEEEEEREE- [
'While (Imperative)i . RISC (Assembly) !
. Seq (i.e. cy;; Cy) : : Loadrv .
. Assign (i.e.vee) E Store v r E
v Ifec; o Jmp | :
: Whileec ; . Jzlr :
. Skip : : Nop :

(Formalisation: https://covern.org/itpl9.html)
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Verified compiler oy o
Application: CDDC input-handling model E /

e — R

Concurrent input-handling architecture
(extremely simplified)

BRIEFRFRrFFRARE
FTEPPRBRRPAPRE

r ----------------- =
1

While (Imperative)
Seq (i.e. ¢y ;; Cy)
Assign (i.e. v « e)

Overla
If e.C1 Co I:;Irivery
While e c

Skip

(Formalisation: https://covern.org/itpl9.html)
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Application: CDDC input-handling model E /
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[ ] [ ] [ ] /
Verified compiler Iy
] (Based on: b1
Overview Tedesco et al. CSF’16) N .~
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Verified compiler

(Based on:

Overview Tedesco et al. CSF’16)

An Isabelle/HOL primrec function &
'While (Imperative)! ' RISC (Assembly) |
I Seq (i.e. ¢y :: Cy) : E loadrv
. Assign (i.e.vee) ! : Storevr
y Ifeci o Jmp | :
» Whileec : ' Jzlr :
} Skip ! : Nop :

 Proof approach: ~7K lines of Isabelle/HOL script
e Prevents data races on shared memory
e Knows when safe to optimise reads

« Application: 2-thread input-handling model
of Cross Domain Desktop Compositor

(Formalisation: https://covern.org/itpl9.html)
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Our contributions (Conclusion)

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results
2. Verified compiler
While-language to RISC-style
assembly \
E (Proof-of-concept
for techmque
Impact

1st such proofs carried to assembly-level model by compller
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Our contributions (Conclusion)

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results

1. Decomposition principle 2. Verified compiler
for confidentiality-preserving While-language to RISC-style

refinement assembly
_ g Proof effort
= i:,/} almost halved!
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- for techmque

Impact
1st such proofs carried to assembly-level model by compller
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Our contributions (Conclusion) +Q & A

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results

1. Decomposition principle 2. Verified compiler
for confidentiality-preserving While-language to RISC-style

refmement assembly
g Proof effort
= /} almost halved!
] l '7 ‘ , (Technique) (Proof-of-concept
- for techmque

Impact
1st such proofs carried to assembly-level model by compller

Thank yOU.’ Please see —» (Formalisation: https://covern.org/itpl9.html)
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Appendix @m/ D

Differences from Tedesco et al. CSF'16 compilation scheme

e Seq (i.e. ¢y ;; Cy)

a | o

e Assign (i.e. v « e)

e |Store Vr

elfec;C

e |J2|r| C, |Jmpl G,

e While e c e Skip

Nop

e f]zrl c | e Timp

Tedesco et al. CSF’16
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. 7~
Appendlx | DATA | &
Differences from Tedesco et al. CSF'16 compilation scheme

e Seq (i.e. ¢y ;; Cy) e LockAcq | New'i
C1 I Cy LockAcq |
. ASSIQfl'(f‘é/\;—-(—m;)~~~ }Fixed' * LockRel |
[ e [Storevr LockRel |
e Ife clxc"2 """"""
e |ler| C; |Jmpl C
‘e Whileec Simplified! + Skip
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