| | | |
/ N NS S ISANNN

\ \/\/\/ 7~ \ D
|5ATA| N

/\/ NN\ N\
[I B
\ / N NS N N7\
[I B

N N\~ 7

Verifying that a compiler preserves I
concurrent value-dependent -~ I/ |
information-flow security NN
Robert Sison (UNSW Sydney, Data61) and Toby Murray (University of Melbourne) I I
September 2019 7”7~ \

THE UNIVERSITY OF
NEW SOUTH WALES

D <@
S RIS
oG

IN RS OF
MELBOURNE

No leaks!

2 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

o D

So you’ve proved your program doesn’t leak secrets...

How do you know your compiler won’t introduce leaks?

No leaks!

2 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

o D

So you’ve proved your program doesn’t leak secrets...

How do you know your compiler won’t introduce leaks?

No leaks!

What if your compiler could be proved to preserve it?

2 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

pd
| DATA | @
q
N 7
So you’ve proved your program doesn’t leak secrets...

What if your compiler could be proved to preserve it?

3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

pd
| DATA | @
q
N 7
So you’ve proved your program doesn’t leak secrets...

What if your compiler could be proved to preserve it?

Here's how!

3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

pd
| DATA | &
q
N 7
So you’ve proved your program doesn’t leak secrets...

What if your compiler could be proved to preserve it?

Here's how!

Using confidentiality-preserving refinement

3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

pd
| DATA | &
q
N 7
So you’ve proved your program doesn’t leak secrets...

What if your compiler could be proved to preserve it?

Here's how!

Using confidentiality-preserving refinement

1. With a decomposition
principle

1091,

3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

e
| DATA | @
q
N 7~
So you’ve proved your program doesn’t leak secrets...

What if your compiler could be proved to preserve it?

Here's how!

Using confidentiality-preserving refinement

1. With a decomposition 2. Applied to a compiler
principle (in Isabelle/HOL)

3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions o | @y

So you’ve proved your program doesn’t leak secrets...

What if your compiler could be proved to preserve it?

Here's how!

Using confidentiality-preserving refinement

1. With a decomposition 2. Applied to a compiler
principle (in Isabelle/HOL)

3 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal

Prove a compiler preserves proofs of
confidentiality — in an interactive theorem prover!

Results
1. Decomposition principle 2. Verified compiler
for confidentiality-preserving While-language to RISC-style

refinement assembly \
= | T0 | (Technique) (Proof-of-concept
] l @ , for technique)

(Formalisation: https://covern.org/itpl9.html)

4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal "
(Specifically...)
Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results
1. Decomposition principle 2. Verified compiler
for confidentiality-preserving While-language to RISC-style

refinement assembly \
= | 10 | (Technique) (Proof-of-concept
] l @ , for technique)

(Formalisation: https://covern.org/itpl9.html)

4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal "
(Specifically...)
Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results
1. Decomposition principle 2. Verified compiler
for confidentiality-preserving While-language to RISC-style
refineme:nt assembly \
] l L S & P:s:ieth;?;::m
Impact

1st such proofs carried to assembly-level model by compller

(Formalisation: https://covern.org/itpl9.html)

4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation

e
\ A
(Why all this?) N o~

concurrent
value-dependent information-flow security

4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation

v
| DATA | @
, B
Goal (Why it’s hard!) \(Why ALt N o~

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation

Background: Murray et al. (CSF’16)
Goal [4 (Why still hard?)

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

4 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation TATA @
Confidentiality for modern software (CSF’16) E v

Concurrent value-dependent information-flow security

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation o | o
Confidentiality for modern software (CSF’16) E /

Doesn't leak secrets
g (storage channels)

Concurrent value-dependent information-flow security

Confidentiality

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation o | o
Confidentiality for modern software (CSF’16) E /

Doesn't leak secrets
g (storage channels)

Concurrent value-dependent information-flow security

Confidentiality

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation o | o
Confidentiality for modern software (CSF’16) E /

1. Multiple moving parts ,
(well-synchronised) Doesn't leak secrets

¢ V4 (storage channels)
Concurrent value-dependent|information-flow security

Confidentiality

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation o | o
Confidentiality for modern software (CSF’16) E /

1. Multiple moving parts ,
(well-synchronised) Doesn't leak secrets

¢ V4 (storage channels)
Concurrent value-dependent| information-flow security

2. Mixed-sensitivity reuse Confidentiality
(of devices, space, etc.)

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation o | o
Confidentiality for modern software (CSF’16) E /

1. Multiple moving parts ,
(well-synchronised) Doesn't leak secrets

¢ V4 (storage channels)
Concurrent value-dependent|information-flow security

2. Mixed-sensitivity reuse |3. Compositionally! Confidentiality

(of devices, space, etc.) (per-thread effort)
]

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Confidentiality for modern software (CSF’16) E S

1. Multiple moving parts ,
(well-synchronised) Doesn't leak secrets

¢ V4 (storage channels)
Concurrent value-dependent|information-flow security

2. Mixed-sensitivity reuse |3. Compositionally! Confidentiality

(of devices, space, etc.) (per-thread effort)
|

Beaumont et al.

(ACSAC’16)
Example
(DSTG + Data61 collaboration)

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Confidentiality for modern software (CSF’16) E /

Unclassified

V' roosecREr o "

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Confidentiality for modern software (CSF’16) E /

Unclassified

V' roosecREr o "

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Cross Domain
Desktop Compositor
(CDDC)

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Cross Domain
Desktop Compositor
(CDDC)

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Cross Domain
Desktop Compositor
(CDDC)

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Cross Domain
Desktop Compositor
| (CDDC)

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

DOMAIN 1

Documentl - Microsoft Word

Insert Page Layout References Mailings

Cambria (Meadings) ~ 14 -
B 7 U - e x, X) |
"W-A-A AN B

€ Secunty News and Views for the World « The Register - Windows Intemet Explorer = R =<
@'\,, e A ht theregister.co.uk it g P

Favorites A Security News and Views for the World « The Regi... g me v Pagev Safetyv Tools~ g~

Login Sgnup tog The Channe! The Next Platform

a DATA CENTRE SOFTWARE NETWORKS SECURITY NFRASTRUCTURE DEVOPS BUSINESS HARDWARE SCENCE BOOTNOTES FORUMS

SECURITY
Most read
Touchnote breach:

Wrote a postcard ‘ Cryptowall 4 0. Update
- n 8 makes wor st
with us? Thieves ransomware worse stil

have your pal's

name, address Space fans eye launch of
The gift that keeps on L Lego Saturn V
gving. (Yes they have your

details too)
Here's the little-known legal
é oophole that permitted
mass surveillance in the

UK

@ Internet | Protected Mode: On

Page:10f 1

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Cross Domain
Desktop Compositor
(CDDC)

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Cross Domain
Desktop Compositor
(CDDC)

Doesn't leak secrets
N4 (storage channels)

value-dependent|information-flow security

2. Mixed-sensitivity reuse Confidentiality

(of devices, space, etc.)

SECRET,

PROTECTED, f
or ?

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Cross Domain
Desktop Compositor
(CDDC)

Doesn't leak secrets
N4 (storage channels)

value-dependent|information-flow security

2. Mixed-sensitivity reuse Confidentiality

(of devices, space, etc.)

SECRET,

PROTECTED,
or ?

f

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Cross Domain

1. Multiple moving parts
(well-synchronised)

N\

Concurrent value-dependent

2. Mixed-sensitivity reuse
(of devices, space, etc.)

Desktop Compositor
(CDDC)

Doesn't leak secrets
N4 (storage channels)

information-flow security

Confidentiality

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

CYBER ASSURANCE AND OPERATI(

D0 v‘ el
¥ S

1. Multiple moving parts
(well-synchronised)

N\

Concurrent value-dependent

2. Mixed-sensitivity reuse
(of devices, space, etc.)

'-'

=cloooclcoools

si=nojm
2 CER) b

Overlay
Driver

Cross Domain
Desktop Compositor
(CDDC)

seL4-based software archltecture

D' Output
Driver
D‘ Output
Driver

Doesn't leak secrets
g (storage channels)

information-flow security

Confidentiality

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Confidentiality for modern software (CSF’16) E S

1. Multiple moving parts :
(well-synchronised) Doesn't leak secrets

¢ V4 (storage channels)
Concurrent value-dependent|information-flow security

2. Mixed-sensitivity reuse Confidentiality
(of devices, space, etc.)

seL4-based software architecture
(Case study: simplified model)

e

=) [=]=]=1~] [~})}

Overlay
Driver

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Confidentiality for modern software (CSF’16) E S

1. Multiple moving parts

(well-synchronised) Doesn't leak secrets
\ N4 (storage channels)
Concurrent value-dependent|information-flow security
2. Mixed-sensitivity reuse |3. Compositionally! Confidentiality
(of devices, space, etc.) (per-thread effort)

seL4-based software architecture
(Case study: simplified model)

~

Overlay
Driver

“H-

+) [FI=1=1%) [)

J

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Confidentiality for modern software (CSF’16) E S

1. Multiple moving parts

(well-synchronised) Doesn't leak secrets
\ N4 (storage channels)
Concurrent value-dependent|information-flow security
2. Mixed-sensitivity reuse |3. Compositionally! Confidentiality
(of devices, space, etc.) (per-thread effort)

seL4-based software architecture
(Case study: simplified model)

Overlay
Driver

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Confidentiality for modern software (CSF’16) E S

1. Multiple moving parts

(well-synchronised) Doesn't leak secrets
\ N4 (storage channels)
Concurrent value-dependent|information-flow security
2. Mixed-sensitivity reuse |3. Compositionally! Confidentiality
(of devices, space, etc.) (per-thread effort)

Can a compiler preserve it?

5 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) <. _-

Concurrent value-dependent information-flow security

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

Murray et al. CSF’16

control variable contents
(sensitivity-switching)

Concurrent|value-dependent|information-flow security

f

Some extra stuff to preserve
(not that hard)

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

control variable contents
(sensitivity-switching)

(Concurreng)/alue-dependent information-flow security

Some extra stuff to preserve
(not that hard)

This particularly
makes it harder!

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

control variable contents
(sensitivity-switching)

(Concurreng)/alue-dependent information-flow security

Some extra stuff to preserve
(not that hard)

This particularly
makes it harder!
Interference-resilience (tricky)

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

Mantel et al. CSF’11

relies/guarantees
(synchronisation)

control variable contents
(sensitivity-switching)

Concurren

X

Some extra stuff to preserve
(not that hard)

alue-dependent information-flow security

This particularly
makes it harder!
Interference-resilience (tricky)

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

control variable contents
(sensitivity-switching)

relies/guarantees
(synchronisation)

Concurrent)value-dependent information-flow security

Some extra stuff to preserve
(not that hard)

This particularly
makes it harder!

Interference-resilience (tricky)
+

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

control variable contents No storage leaks
(sensitivity-switching) /

relies/guarantees
(synchronisation)

Concurrent)value-dependent information-flow security

Some extra stuff to preserve
(not that hard)

This particularly
makes it harder!

Interference-resilience (tricky)
+

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

control variable contents No storage leaks
(sensitivity-switching) /

relies/guarantees
(synchronisation)

Concurrent)value-dependent information-flow security

Some extra stuff to preserve
(not that hard)

This particularly
makes it harder!

Interference-resilience (tricky)
+

Each thread must prevent
(scheduler-relative)
timing leaks!

Volpano & Smith, CSFW’98

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

control variable contents No storage leaks
(sensitivity-switching) /

relies/guarantees
(synchronisation)

Concurrent)value-dependent information-flow security

Some extra stuff to preserve
(not that hard)

This particularly Program A Program B
makes it harder! // Initially, v = 0
Interference-resilience (tricky) if (h) then
+ skip ~
Each thread must prevent else Li=v
(scheduler-relative) skip; skip
timing leaks! £i
Volpano & Smith, CSFW’98 V=1
Minimal example:

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation DATA | @

Why wouldn’t a compiler preserve it? (CSF’16) ~ .-

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly Program A Program B
makes it harder! // Initially, v = 0
if (h) then
+ skip
Each thread must prevent else Li=v
(scheduler-relative) skip; skip
timing leaks! £i
Volpano & Smith, CSFW’98 V=1
Minimal example: J h isn’t assigned to anything J h isn’t even here!

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation “Daa | @

Why wouldn’t a compiler preserve it? (CSF’16) ~ .-

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly Thread A Thread B

makes it harder! // Initially, v = 0
if (h) then
* skip | | =
Each thread must prevent else =V
(scheduler-relative) skip; skip
timing leaks! £i
Volpano & Smith, CSFW’98 V=1
Minimal example:

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly Thread A Thread B
makes it harder! // Initially, v = 0
if (h) then
* skip | | =
Each thread must prevent else =V
(scheduler-relative) skip; skip
timing leaks! £i
Volpano & Smith, CSFW’98 V=1 Timing leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 ThreadA [schedue | Thread B

makes it harder! // Initially, v=0 [AAA B, .
if (h) then
+ skip | I ._
Each thread must prevent else L:=v
(scheduler-relative) skip; skip
timing leaks! v=0 fj
Volpano & Smith, CSFW’98 v :=1 [iming leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 ThreadA [schedue | Thread B

makes]t harder! // |n'|t'|ally, V = 0 47 A) A: B) oo
> if (h) then
t skip | I ._
Each thread must prevent else L:=v
(scheduler-relative) skip; skip
timing leaks! v=0 fj
Volpano & Smith, CSFW’98 V=1 Timing leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 ThreadA [schedule | Thread B

makes]t harder! // |n'|t'|ally, V = 0 47 A) A: B) oo
if (h) then
+ skip | I =
Each thread must prevent else =V
(scheduler-relative) >skip; skip
timing leaks! v=0 fj
Volpano & Smith, CSFW’98 V=1 Timing leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 ThreadA [schedue | Thread B

makes]t harder! // |n'|t'|ally, V = 0 47 A) A: B) oo
if (h) then
+ skip | I =
Each thread must prevent else =V
(scheduler-relative) skig>skip
timing leaks! v=0 fj
Volpano & Smith, CSFW’98 V=1 Timing leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 ThreadA [schedue | Thread B

makes it harder! / Initially, v =0 &K KB -
if (h) then =0
+ skip
Each thread must prevent else | I >li=v
(scheduler-relative) skig>skip
timing leaks! v=0 fj
Volpano & Smith, CSFW’98 V=1 Timing leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 Thread A Schedule | Thread B
makes it harder! / Initially, v =0 &K KB -
if (h) then =0
+ skip
Each thread must prevent else | I >li=v
(scheduler-relative) skip; skip
timing leaks! v=1 fj
Volpano & Smith, CSFW’98 ._ 1 Timing leak
. 2Vl o
Minimal example:

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 Thread A Schedule | Thread B

makes it harder! // Initially, v=0 [AAA B, .
if (h) then =0
+ skip | I ._
Each thread must prevent else L:=v
(scheduler-relative) skip; skip
timing leaks! v=0 fj
Volpano & Smith, CSFW’98 v :=1 [iming leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 Thread A Schedule | Thread B

makes]t harder! !/ |n'|t'|ally, v=20 47 A) A: B) oee
if (h) then =0
+ skip | I ._
Each thread must prevent else L:=v
(scheduler-relative) skip; skip
timing leaks! v=0 fj
Volpano & Smith, CSFW’98 v :=1 [iming leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 ThreadA [schedue | Thread B

makes]t harder! // |n'|t'|ally, V = 0 47 A) A: B) oo
if (h) then =0
t skip | I =
Each thread must prevent else =V
(scheduler-relative) skip; skip
timing leaks! v=0 fj
Volpano & Smith, CSFW’98 v :=1 [iming leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 ThreadA [schedue | Thread B

makes]t harder! // |n'|t'|ally, V = 0 47 A) A: B) oo
if (h) then =0
t skip | I =
Each thread must prevent else =V
(scheduler-relative) skip; skip
timing leaks! v=1 fj
Volpano & Smith, CSFW’98 Vo= 1 Timing leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 ThreadA [schedue | Thread B

makes it harder! / Initially, v =0 &K KB -
if (h) then =0
t skip | I =
Each thread must prevent else =V
(scheduler-relative) skip; skip
timing leaks! v=1 fj
Volpano & Smith, CSFW’98 Vo= 1 Timing leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

No storage leaks J
4

alue-dependent information-flow security

Concurren

This particularly h-0 ThreadA [schedue | Thread B
makes it harder! / Initially, v =0 &K KB -
if (h) then =0
t skip | I .
Each thread must prevent else L=V
(scheduler-relative) skip; skip Storage leak
timing leaks! v=1 fj of h!
Volpano & Smith, CSFW’98 V=1 Timing leak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation oy o
Why wouldn’t a compiler preserve it? (CSF’16) ~. -

control variable contents No storage leaks J

(sensitivity-switching) /

relies/guarantees
(synchronisation)

Concurrent)value-dependent information-flow security

Some extra stuff to preserve
(not that hard)

This pa.rticularly Thread A Schedule | Thread B
makes it harder! // nitially, v=0 [AAAB, ..
Interference-resilience (tricky) if (h) then Timi
= . imin
+ skip; skip fix S | I | :=
Each thread must prevent else o=/
(scheduler-relative) skip; skip Storage leak
timing leaks! fi of h!
Volpano & Smith, CSFW’98 VD Fimingleak
: fh
Minimal example: °

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation | DATA | @

Why wouldn’t a compiler preserve it? (CSF’16) ~ .-

No storage leaks /
4

alue-dependent information-flow security

Concurren

r But: Compiler may eliminate it!
This particularly Thread A schedule | Thread B
makes it harder! I In1t1ally, v=0[AAAB, ..
+ sk1p<) ng ” .
Each thread must prevent else L=V
(scheduler-relative) skip; skip Storage leak
timing leaks! ﬁ of h!
Volpano & Smith, CSFW’98 = 1 Timing leak
fh
Minimal example: 0 A

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Motivation | DATA | @

Why wouldn’t a compiler preserve it? (CSF’16) ~ .-

No storage leaks /
4

alue-dependent information-flow security

Concurren

But: Compiler may eliminate it!
(or, introduce new “if (h)”!)
This particularly Thread A schedule | Thread B
makes it harder! I In1t1ally, v=0[AAAB, ..
+ sk1p<) ng ” .

Each thread must prevent else L=V
(scheduler-relative) skip; skip Storage leak
timing leaks! ﬁ of h!

Volpano & Smith, CSFW’98 = 1 Timing leak
fh
Minimal example: 0 A

6 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background oy o
Why is it hard to prove? (CSF’16) E /
Concurrent value-dependent information-flow security
-preserving refinement

2A »2A’
B B Abstract
1A * ————————— 1A "
| |
‘ R : R Direction
f
o comp?lation
R ‘ R
| |
‘ 2C0---------- 720" v
T T Concrete
1C >»1C7

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background oy o
Why is it hard to prove? (CSF’16) o

Confidentiality-preserving refinement

2A »2A’
B B Abstract
1A * ————————— 1A "
| |
‘ R : R Direction
f
o comp?lation
R ‘ R
| |
‘ 2C0---------- 720" v
T T Concrete
1C >»1C7

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background DATA | &
Why is it hard to prove? (CSF’16) N~

Confidentiality-preserving refinement

2A »2A’
B B Abstract
1A * ————————— 1A "
| |
‘ R : R Direction
| f
: comp?lation
R ‘ R |
| |
‘ 2C0---------- 720" v
T T Concrete
1C >»1C7 o
“’@ AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background DATA | @
Why is it hard to prove? (CSF’16) o

Confidentiality-preserving refinement

Abstract
Direction
P of
Ijogran) compilation
configurations

_________ v

Concrete

1C 1"
‘@ AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background DATA | %
Why is it hard to prove? (CSF’16) N~

Confidentiality-preserving refinement

‘ Abstract
Relations _
(between) |
Direction
I
| of
P'togrant‘ ' compilation
configurations R R :

' \
_________ |
5@ Concrete
1C 1C’
‘*@ AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background DATA | %
Why is it hard to prove? (CSF’16) N~

Confidentiality-preserving refinement

‘ Abstract
Relations _
(between) |
Direction
I
| of
P'togrant‘ ' compilation
configurations R R :

' \
_________ |
5@ Concrete
1C 1C’
‘*@ AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background
Why is it hard to prove? (CSF’16)

“Usual” refinement:

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Abstract

Direction
of
compilation

\

Concrete

Background DATA | &
Why is it hard to prove? (CSF’16) N~

“Usual” refinement:

A simulates C = C refines A

Abstract

IA---------- >1A’ "

|

‘ ! Direction
|
| of
compilation

R R

L .

Concrete

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background DATA | &
Why is it hard to prove? (CSF’16) N~

“Usual” refinement:

A simulates C = C refines A

Abstract
lA---------- >1A’ :
|
‘ : Direction
| of
compilation
R R
' &
‘ |
I
. Concrete
1C >1C7
For-all

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background DATA | &
Why is it hard to prove? (CSF’16) N~

“Usual” refinement:

A simulates C = C refines A

Abstract
gl = m————— > LA’ "
I
] : Direction
Exists , of
compilation
R R
' .
‘ |
: Concrete
1C >»1C"
For-all

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background o | o
Why is it hard to prove? (CSF’16) o

From compiler

o Confidentiality-preserving refinement

: 2A »2A’
Security proof
(Bisimulation B) B B Abstract
IA----=-=-=---~- >1A’

‘% AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background o | o
Why is it hard to prove? (CSF’16) o

From compiler

o Confidentiality-preserving refinement

. 2A »2A’
Security proof
(Bisimulation B) B B Abstract
IA----=-=----- >1A’ m
+
? Direction
¢ of
compilation
For free?
Security proof 20--=---==-=--- >2C" v
(Bisimulation “B.” “B.” Concrete
c‘BC”) 10 N 10/ ovﬁ\\e
“’@ AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background DATA | %
Why is it hard to prove? (CSF’16) N~

]fron; COFCT;P“GF “Confidentiality-preserving refinement
ront-en

. 2A »2A’
Security proof
(Bisimulation B) B B Abstract
1At--------- 1A -
+
| 1
Compiler R ! R Direction
correctness proof | of
(Refinement R) : compilation
“For free”* R R !
| 1
Security proof ‘ 20 - -~~~ ==-~- +2C" v
(Bisimulation T T Concrete
Bof BRI) 1C >1C7
‘6@ AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background DATA | %
Why is it hard to prove? (CSF’16) N~

]fron; COFCT;P“GF “Confidentiality-preserving refinement
ront-en

(Two-sided!)

. 2A »2A’
Security proof
(Bisimulation B) B B Abstract
1At--------- 1A -
+
| 1
Compiler R ! R Direction
correctness proof | of
(Refinement R) : compilation
“For free”* R R !
| 1
Security proof ‘ 20 - -~~~ ==-~- +2C" v
(Bisimulation T T Concrete
Bof BRI) 1C >1C7
‘6@ AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background oy o
Why is it hard to prove? (CSF’16) o

]fron; COFCT;P“GF “Confidentiality-preserving refinement
ront-en

(Two-sided!)

: 2A »2A’
Security proof
(Bisimulation B) B B Abstract
1A1--c-—— -~ 1A’ -
+
| 1
Compiler . | Directi
correctness proof ‘ Exists | R Weocflon
(Refinement R) 1 : compilation
“For free”* R R !
| 1
Security proof ‘ 20 |=—=—=—=-- +2C" v
(Bisimulation v T Concrete
BCOfBRI) 1C SE— N 10/ &
For-all ‘*@ AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background oy o
Why is it hard to prove? (CSF’16) o

]fron; COFCT;P“GF “Confidentiality-preserving refinement
ront-en

(Two-sided!)

Security proof 24 » 24’
(Bisimulation B) B /' For-all B Abstract
" 1A * ————————— > 1A -
| 1
Compiler . | Directi
correctness proof ‘ Exists | R Weocflon
(Refinement R) 1 : compilation
“For free”* R R |
| 1
Security proof ‘ 204 |-——=—-- +2C" v
(Bisimulation v T Concrete
BCOfBRI)]_C’ — >10/ @jﬁ@
For-all AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background

Why is it hard to prove? (CSF’16)

From compiler

~
5™
+ @

“Confidentiality-preserving refinement

front-end (Two-sided!)
Security proof 24 » 24’
(Bisimulation B) B For-all B Abstract
" 1A ~\ _______ S N 1A/ : —
| |
Compiler , 2| R Direction
correctness proof Exists | of
(Refinement R) 1 . : compilation
“For free™ 1% Exists /X |
| |
Security proof ‘ 204 |===-%-- 72C’ v
(Bisimulation v T Concrete
B.of BRI 10— e 10" &
For-all AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background

Why is it hard to prove? (CSF’16)

From compiler

~
5™
+ @

“Confidentiality-preserving refinement

front-end (Two-sided!)
Security proof 24 » 24’
(Bisimulation B) B For-all B Abstract
" 1A ~\ _______ S N 1A/ : —
| |
Compiler , 2| R Direction
correctness proof Exists | of
(Refinement R) 1 . : compilation
“For free™ 1% Exists /X |
| |
Security proof ‘ 20+ |====-- 72C" v
(Bisimulation A T Concrete
B.of BRI 1O —— .10 &
For-all AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Background

Why is it hard to prove? (CSF’16)

From compiler

(Compare: Barthe et al. CSF’18)

Sl

“Confidentiality-preserving refinement

front-end (Two-sided!)
Security proof 24 » 24’
(Bisimulation B) B For-all B Abstract
" 1A ~\ _______ S N 1A/ : —
| |
Compiler , 2| R Direction
correctness proof Exists | of
(Refinement R) 1 . : compilation
“For free™ 1% Exists /X |
| |
Security proof ‘ 20+ |====-- 72C" v
(Bisimulation A T Concrete
B.of BRI 1O —— .10 &
For-all AFP entry:

Dependent SIFUM Refinement

7 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Plan: Use confidentiality-preserving refinement

8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results

1. Decomposition principle

for confidentiality-preserving
refinement

-6
] l | =® f (Technique)

8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results
1. Decomposition principle 2. Verified compiler
for confidentiality-preserving While-language to RISC-style
refineme:nt assembly \
] l -@ F s & P:s:ieth;?;::m
Impact

1st such proofs carried to assembly-level model by compller

8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results

1. Decomposition principle

for confidentiality-preserving
refinement

v,

] l | =@ f (Technique)

8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results

1. Decomposition principle

for confidentiality-preserving
refinement
i Proof effort

= 4 almost halved!
] l _ @ f (Technique)

8 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

24 »2A’
B B
1A* ————————— 1A

R R
R R

‘ 2C0---------- 720"
1z 7z
1C »1C”

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed
Simpler confidentiality-preserving refinement

~
5™
+ @

2A - - - abs-steps 2A 2C 2A
A--------=--- > A/ B = B
abs-steps A C | 1A { - - abs-steps 1A 1C 1A
|
| R ‘ R
R R R ‘ R
|
|
! 2C - - - stops 2C' ‘ 2C
C ! z N a
1C - - - stops 1C 1
2A 2A’
B* B
. . TAq{-=------- »1A",
implies o

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

2A - - - abs-steps 2A 2C 2A
“ w 5 - Y
abs-steps A C | 1A { - - abs-steps 1A 1C 1A
|
/\ | - ‘ R
R R R ‘ R
I -~
| ¢ v
: 2C - - - stops 2C' ‘ 2¢ 720")
| T = z N
‘ ‘ 1C - - - stops 1C 1C '\ 16:’/

1. “Usual” proof
of refinement

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

2A - - - abs-steps 2A 2C 2A
“ w 5 - Y
abs-steps A C | 1A { - - abs-steps 1A 1C 1A
|
/\ | - ‘ R
R R R ‘ R
I -~
| ¢ v
: 2C - - - stops 2C' ‘ 2¢ 720")
| T = z N
‘ ‘ 1C - - - stops 1C 1C '\ 16:’/

1. “Usual” proof
of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps
for (refinement) relation R

{ 2A - - - abs-steps 2A 2C B2A
A----—-———-—-——- > A’ B =
abs-steps A C | 1A { - - abs-steps 1A 1C 1A
|
| R ‘ R
R R
| R | R
| ¢ \
! 2C - - - stops 2C' ‘ 2¢ 772C")
C , z = z P T
c 1C - - - stops 1C 1C I\ 10,"/

1. “Usual” proof
of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps
for (refinement) relation R w

{ 2A - - - abs-steps 2A 2C B2A
___________ / B =
abs-steps A C ' fll 1A { - - abs-steps 1A 1C 1A
R ‘ R
R R » ‘ R
: 2C - - - stops 2C' ‘ 2C ///20’:'
/ T — g R A
© ¢ 1C - - - stops 1C 1C '\ 16:’/
1. “Usual” proof 2. Consistent pacing

of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ 2A - - - abs-steps 2A 2C 2A
A -———-—-—-—-—-——— s A/ = @
abs-steps A C | 1A 1 - - abs-steps 1A 1C 1A
R ‘ R
R R » ‘ R
: 2C - - - stops 2C' ‘ 2C ///20’:'
/ z = A ,/ z .,
© ¢ 1C - - - stops 1C 1C '\ 16:’/
1. “Usual” proof 2. Consistent pacing

of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R ' (bisimulation) relation B

@
, B
“abs-steps ACT A 14
! R
R R R
: ‘ 2C 45907
! I ;T
C C’ 1C .\ IC:’//
1. “Usual” proof 2. Consistent pacing

of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R ' (bisimulation) relation B

V4 >® 24
, B
“abs-steps ACT A O x 19
! R
R R R
: 2C 7 /2/0\“
. o | i
C C’ 1C - 1q’,’
1. “Usual” proof 2. Consistent pacing

of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R ' (bisimulation) relation B

A >® 24
, B
“abs-steps ACT A O x 19
! R
R R R
: 20 oo
, ¢ A
C C ‘ 1C =1C”,
1. “Usual” proof 2. Consistent pacing

of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed oy o
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B

{ 2A - - - abs-steps 2A 2C 2A
A-—-—-- - — - > A/ = J @
|
|
|

abs-steps A C 1A 1 - - abs-steps 1A 1C 1A
| R ‘ R
R 7.2 R ‘ R
l - ‘ 20 490"
/ 7 7 ;T
C C 16 1C =1C”,
1. “Usual” proof 2. Consistent pacing

of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed o | @
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ 2A - - - abs-steps 2A 2C 'E w 2A
A -—--——-—-——-—-—-—- s A’ = { {}; @
abs-steps A C | 1A 1 - - abs-steps 1A 1C° &/, 14
R ‘ R
R R » ‘ R
: 2C ‘ 2¢ 720",
C c’ Z 1 Ly
1C 1C '\ 16://
1. “Usual” proof 2. Consistent pacing

of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed o | @
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ 2A - - - abs-steps 2A 2C 2A
USRI Sl N
abs-steps A C | 1A 1 - - abs-steps 1A 1C & 1A
R ‘ R
R R » ‘ R
I - ‘ 2C 20",
) T 7z ST
C C 10 10 |\ 1ql//
1. “Usual” proof 2. Consistent pacing
of refinement and

3. Consistent stopping

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed o | @
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ - - - abs-steps 2A 2C 'ﬂl‘ ” 24
A -—--——-—-——-—-—-—- s A’ = { {}; @
abs-steps A C | - - abs-steps 1A 1C &, 14
R ‘ R
R R : | ‘ R
: ‘ 2C ///2C/\|
' 7 ST/
C C’ 1C =107,
1. “Usual” proof 2. Consistent pacing
of refinement and

3. Consistent stopping

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed o | @
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ - - - abs-steps 2A 2C A w 2A
A -—--——-—-——-—-—-—- s A’ = [8 ;3‘";“ @
abs-steps A C | - - abs-steps 1A 1C &, 14
R ‘ R
R R : | ‘ R
| ‘ 2C 490"
! 7 /T
C C’ ‘ 1C - 1q’,’
1. “Usual” proof 2. Consistent pacing
of refinement and

3. Consistent stopping

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed o | @
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ - - - abs-steps 2A 2C A w 2A
A -—--——-—-——-—-—-—- s A’ = { ';3";‘ @
abs-steps A C | - - abs-steps 1A 1C &, 14
R ‘ R
R R : | ‘ R
! 510P) ‘ 2¢ 20"
@ T) T/
C c’ . 1C .\ IC:///
1. “Usual” proof 2. Consistent pacing
of refinement and

3. Consistent stopping

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed o | @
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ 2A - - - abs-steps 2A 2C 2A
USRI Sl B
abs-steps A C | 1A 1 - - abs-steps 1A 1C & 1A
R ‘ R
R R » ‘ R
! 2C - - - stops 20 ‘ 2C ////2C/:|
C c z — J 1 Pz
1C - - - stops 1C 1C >1C7,
1. “Usual” proof 2. Consistent pacing
of refinement and

3. Consistent stopping

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed o | @
Simpler confidentiality-preserving refinement E v

“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ 2A - - - abs-steps 2A 2C 2A
USRI Sl N
abs-steps A C | 1A 1 - - abs-steps 1A 1C & 1A
R ‘ R
R R » ‘ R
! 2C - - - stops 2C 4w ‘ 2C ////2C/:|
: e @ L
1C - - - stops 1C . 1C >1C7,
1. “Usual” proof 2. Consistent pacing
of refinement and

3. Consistent stopping

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

{3 ”» pd
The “cube”, decomposed o | @y
Simpler confidentiality-preserving refinement N
“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ 2A - - - abs-steps 2A 2C 2A
A--c-------- > A - .‘ @
abs-steps A C | 1A 1 - - abs-steps 1A 1C ’ 1A
‘ R ‘ R
: 20 - - - stops 2C 5 /,’/20’)
¢ ¢ 1C - - - stops 1C @‘ 1 : 1q////
1. “Usual” proof 2. Consistent pacing 4. Closedness of
of refinement and “Concrete coupling

3. Consistent stopping invariant” relation /

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

The “cube”, decomposed o | @y
Simpler confidentiality-preserving refinement N

“Pacing function” abs-steps
for (refinement) relation R w

v

C C’

1. “Usual” proof
of refinement

Standard compiler

correctness!
(+ “extra stuff” for conc, val-dep)

2. Consistent pacing

3. Consistent stopping

Security withess
(bisimulation) relation B

2A - - - abs-steps 2A 2C

1A+ - - abs-steps 1A 1C 3

R ‘ R ‘
éc --- stops 2C

1C - - - stops 1C’ @‘
4. Closedness of

and “Concrete coupling
invariant” relation /

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

{3 ”» pd
The “cube”, decomposed o | @y
Simpler confidentiality-preserving refinement N
“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ - - - abs-steps 2A 2C 1!%' w
A - _a?)s_—;t;zg_s_/i c) fll/ - - abs—stez:s 1A 1C | ’
R R » ‘
! --- stops 2C ? /,?:
¢ ¢ - - - stops 1C’ @ :\/////
1. “Usual” proof 2. Consistent pacing 4. Closedness of
of refinement and “Concrete coupling
3. Consistent stopping invariant” relation /
Standard compiler .
correctness! \ No new timing

S '
(+ “extra stuff” for conc, val-dep) and termination leaks!

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

{3 ”» pd
The “cube”, decomposed o | @y
Simpler confidentiality-preserving refinement N
“Pacing function” abs-steps Security witness
for (refinement) relation R w (bisimulation) relation B
{ - - - abs-steps 2A 2C 'A_!'/,,
‘ abs-steps A C | |. - - abs—stq; 1A 1C | ’
R R
! --- stops 2C ? @
. ' ‘ - - - stops 1C’ @
1. “Usual” proof 2. Consistent pacing 4. Closedness of
of refinement and “Concrete coupling
3. Consistent stopping invariant” relation /
Standard compiler .
correctness! ’\ No new timing

S '
(+ “extra stuff” for conc, val-dep) and termination leaks!

9 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Proof effort comparison oy o
Refinement example (excerpt) from CSF’16 E /
skip;
-then skip;
T = regl) := y;
else e x 1= reql
=yt
fi
| fi |
I ———.. e
Abstract program Concrete program

e\\e
‘& formalisation artifact:
https://covern.org/itpl9.html

10 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Proof effort comparison

) , |
Refinement example (excerpt) from CSF’16 N

branch ~—

N on secret
if A #0 then

x =1y

else

fi

B —
Abstract program

—a
then

skip;

skip;

reg0 := vy;

x = reqg0
else

fi

B —
Concrete program

0\\@
& . . .
@ formalisation artifact:
https://covern.org/itpl9.html

10 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Proof effort comparison
Refinement example (excerpt) from CSF’16

branch ~—

N on secret
if A #0 then

x =1y

else

fi

B —
Abstract program

——

padding
to prevent
timing leak

fi

B —
Concrete program

0\\@
& . . .
@ formalisation artifact:
https://covern.org/itpl9.html

10 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Proof effort comparison ém @
Refinement example (excerpt) from CSF’16 N
branch —" | o
(on secret padding
- then to prevent
timing leak
T:i=1y
else
fi
fi
-_* -—*
Abstract program Concrete program
o 44% shorter proof of secure refinement
(-3.6K to ~2K lines of Isabelle/HOL proofs) &P formalisation artifact:

https://covern.org/itpl9.html

10 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results

1. Decomposition principle

for confidentiality-preserving
refinement
% Proof effort

oy
[&

il almost halved!
] l _ @ , (Technique)

11 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results
2. Verified compiler
While-language to RISC-style
assembly \
E (Proof-of-concept
for techmque
Impact

1st such proofs carried to assembly-level model by compller

11 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Overview

An Isabelle/HOL primrec function

e eTEEsssssssEEEs--
1

'While (Imperative)i . RISC (Assembly)
1 Seq (i.e. cy;; Cy) : : Loadrv
. Assign (i.e.vee) : Storevr
y Ifeci o Jmp | E
. Whileec ! Jzlr :
. Skip : Nop '

(Formalisation: https://covern.org/itpl9.html)

12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler o | @y

(Based on: B

Overview Tedesco et al. CSF’16) .~
An Isabelle/HOL primrec function &

'While (Imperative)! ' RISC (Assembly) |

I Seq (i.e. ¢y :: Cy) : E loadrv

. Assign (i.e.vee) ! ' Storevr

y Ifeci o Jmp | :

. Whileec ! JzIr :

» Skip : Nop :

(Formalisation: https://covern.org/itpl9.html)

12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler

(Based on:

Overview Tedesco et al. CSF’16)

An Isabelle/HOL primrec function &
'While (Imperative)! ' RISC (Assembly) |
I Seq (i.e. ¢y :: Cy) : E loadrv
. Assign (i.e.vee) ! ' Storevr
y Ifeci o Jmp | :
. Whileec ! JzIr :
» Skip : Nop :

 Proof approach: ~7K lines of Isabelle/HOL script
e Prevents data races on shared memory
e Knows when safe to optimise reads

(Formalisation: https://covern.org/itpl9.html)

12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler

(Based on:

Overview Tedesco et al. CSF’16)

An Isabelle/HOL primrec function &
'While (Imperative)! ' RISC (Assembly) '
I Seq (i.e. ¢y :: Cy) : E loadrv
. Assign (i.e.vee) ! ' Storevr
y Ifeci o Jmp | :
. Whileec ! JzIr :
» Skip : Nop :

 Proof approach: ~7K lines of Isabelle/HOL script
e Prevents data races on shared memory
e Knows when safe to optimise reads

« Application: 2-thread input-handling model
of Cross Domain Desktop Compositor

(Formalisation: https://covern.org/itpl9.html)

12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler

(Based on:

Overview Tedesco et al. CSF’16)

An Isabelle/HOL primrec function &
'While (Imperative)! ' RISC (Assembly) |
I Seq (i.e. ¢y :: Cy) : E loadrv
. Assign (i.e.vee) ! ' Storevr
y Ifeci o Jmp | :
. Whileec ! JzIr :
» Skip : Nop :

 Proof approach: ~7K lines of Isabelle/HOL script
e Prevents data races on shared memory
e Knows when safe to optimise reads

(Formalisation: https://covern.org/itpl9.html)

12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler

(Based on:

Overview Tedesco et al. CSF’16)

An Isabelle/HOL primrec function &
'While (Imperative)! ' RISC (Assembly) |
I Seq (i.e. ¢y :: Cy) : E loadrv
. Assign (i.e.vee) ! ' Storevr
y Ifeci o Jmp | :
. Whileec ! JzIr :
» Skip : Nop :

 Proof approach: ~7K lines of Isabelle/HOL script

(Formalisation: https://covern.org/itpl9.html)

12 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.g. R cases for if-conditional

If e c; ¢

reac v

e Jizr] « |Jmpl C, RTSC

L ee—

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

If e C1 C,y

reﬁl Jzr H—LJ‘& Jmp Co

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

If e & € C, C,
S 3
e [Jzr H’Tclr& Jmpl c,

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

-
Ife » 7° C, C,

H:%t]:1 Jz1 FE Jmm

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

Fal
'es aise C1 C2

\I H:1er| . [me] &

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

Fal
'es aise C1 C2

FIZLH erliiilmﬁﬁ

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Proof approach E /

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

If e C4 C,
‘ et]:Ai Jzr IL-jEJ:# Jmp C,
 Theorem: R (for B, with J) While
is a secure refinement ﬂ

RISC

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

If e C1 C,

 Theorem: R (for B, with /) -C While
is a secure refinement]] | ﬂ
(via decomposition principle) - O d risc

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

If e C1 C,

 Theorem: R (for B, with I)
is a secure refinement]] | - ﬂ
(via decomposition principle)

 Theorem: Compiler input related to output by R

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

* e.d. R cases for if-conditional (/nductive)

If e C4

« Theorem: R (for B, with /) =€
is a secure refinement]] | - ﬂ

(via decomposition principle)

 Theorem: Compiler input related to output by R

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

e.g. R cases for if-conditional §ductive)
If e

HH

Theorem: R (for B, with /)
is a secure refinement]] | - ﬂ

(via decomposition principle)

 Theorem: Compiler input related to output by R

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler
Proof approach

* Nominate R (and /) to characterise compilation
(for proofs B produced by our type system)

e.g. R cases for if-conditional §ductive)
If e

HH

Theorem: R (for B, with I) f While
is a secure refinement]] | ﬂ
‘(via decomposition principle) J risc

 Theorem: Compiler input related to output by R

(Formalisation: https://covern.org/itpl9.html)

13 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler

(Based on:

Overview Tedesco et al. CSF’16)

An Isabelle/HOL primrec function &
'While (Imperative)! I RISC (Assembly)
I Seq (i.e. ¢y :: Cy) : E loadrv
. Assign (i.e.vee) ! : Storevr
y Ifeci o Jmp | :
» While e c ! . JzIr :
} Skip ! : Nop :

 Proof approach: ~7K lines of Isabelle/HOL script

(Formalisation: https://covern.org/itpl9.html)

14 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

[] [] [] /
Verified compiler Iy
] (Based on: b1
Overview Tedesco et al. CSF’16) N .~
An Isabelle/HOL primrec function &
{While (Imperative): i RISC (Assembly) !
Seq (i.e. ¢1 ;; C3) : E Load r v
Assign (i.e.v e e) ! ' Store v r

Ifec;C, Jmp |
While e ¢ Jzlr
Nop

Skip

« Application: 2-thread input-handling model
of Cross Domain Desktop Compositor

(Formalisation: https://covern.org/itpl9.html)

14 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Application: CDDC input-handling model E /

e EEEEEEERERRREm - FrEEEEEEEEEEEEREE- [
'While (Imperative)i . RISC (Assembly) !
. Seq (i.e. cy;; Cy) : : Loadrv .
. Assign (i.e.vee) E Store v r E
v Ifec; o Jmp | :
: Whileec ; . Jzlr :
. Skip : : Nop :

(Formalisation: https://covern.org/itpl9.html)

15 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Application: CDDC input-handling model E /

e — R

Concurrent input-handling architecture
(extremely simplified)

BRIEFRFRrFFRARE
FTEPPRBRRPAPRE

r ----------------- =
1

While (Imperative)
Seq (i.e. ¢y ;; Cy)
Assign (i.e. v « e)

Overla
If e.C1 Co I:;Irivery
While e c

Skip

(Formalisation: https://covern.org/itpl9.html)

15 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Application: CDDC input-handling model E /

~150 lines While

e EEEEEEERERRREm - FrEEEEEEEEEEEEREE- [
'While (Imperative)i . RISC (Assembly) !
. Seq (i.e. cy;; Cy) : : Loadrv .
. Assign (i.e.vee) E Store v r E
v Ifec; o Jmp | :
: Whileec ; . Jzlr :
. Skip : : Nop :

(Formalisation: https://covern.org/itpl9.html)

15 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Application: CDDC input-handling model

~150 lines While

'While (Imperatlve) RISC (Assembly)

. Seq (i.e. cy;; Cy) E Loadrv .
. Assign (i.e.vee) Store v r E
v Ifec; o Jmp | :
. Whileec Jz!r :
. Skip Nop :

(Formalisation: https://covern.org/itpl9.html)

15 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Application: CDDC input-handling model E /
~150 lines While ~250 RISC instructions

'Whlle (Imperat|ve)I RISC (Assembly) !
. Seq (i.e. cy;; Cy) ' Loadrv .
. Assign (i.e.vee) Store v r E
v Ifec; o Jmp | :
: Whileec ; . Jzlr :
. Skip : : Nop :

(Formalisation: https://covern.org/itpl9.html)

15 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Application: CDDC input-handling model E /
~150 lines While ~250 RISC instructions

'Whlle (Imperat|ve)I RISC (Assembly) !
. Seq (i.e. cy;; Cy) ' Loadrv .
. Assign (i.e.vee) Store v r E
v Ifec; o Jmp | :
: Whileec ; . Jzlr :
. Skip : : Nop :

(Formalisation: https://covern.org/itpl9.html)

15 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Application: CDDC input-handling model E /

~150 lines While ~250 RISC instructions

_>.

r - ‘

'While (Imperative)i ‘¥ A RISC (Assembly) !
. Seq (i.e. cy;; Cy) ' Loadrv .
. Assign (i.e.vee) Store v r E
v Ifec; o Jmp | :
: Whileec ; . Jzlr :
. Skip : : Nop :

(Formalisation: https://covern.org/itpl9.html)

15 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Application: CDDC input-handling model E /

~150 lines While ~250 RISC instructions

_>.

r - ‘

'While (Imperative)i ‘¥ A RISC (Assembly) !
. Seq (i.e. cy;; Cy) ' Loadrv .
. Assign (i.e.vee) Store v r E
v Ifec; o Jmp | :
: Whileec ; . Jzlr :
. Skip : : Nop :

(Formalisation: https://covern.org/itpl9.html)

15 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler oy o
Application: CDDC input-handling model E /
~150 lines While ~250 RISC instructions

_>.

'Whlle (Imperat|ve)I RISC (Assembly) !
. Seq (i.e. cy;; Cy) ' Loadrv .
. Assign (i.e.vee) Store v r E
v Ifec; o Jmp | :
: Whileec ; . Jzlr :
. Skip : : Nop :

(Formalisation: https://covern.org/itpl9.html)

15 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

[] [] [] /
Verified compiler Iy
] (Based on: b1
Overview Tedesco et al. CSF’16) N .~
An Isabelle/HOL primrec function &
{While (Imperative): i RISC (Assembly) !
Seq (i.e. ¢1 ;; C3) : E Load r v
Assign (i.e.v e e) ! ' Store v r

Ifec;C, Jmp |
While e ¢ Jzlr
Nop

Skip

« Application: 2-thread input-handling model
of Cross Domain Desktop Compositor

(Formalisation: https://covern.org/itpl9.html)

16 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Verified compiler

(Based on:

Overview Tedesco et al. CSF’16)

An Isabelle/HOL primrec function &
'While (Imperative)! ' RISC (Assembly) |
I Seq (i.e. ¢y :: Cy) : E loadrv
. Assign (i.e.vee) ! : Storevr
y Ifeci o Jmp | :
» Whileec : ' Jzlr :
} Skip ! : Nop :

 Proof approach: ~7K lines of Isabelle/HOL script
e Prevents data races on shared memory
e Knows when safe to optimise reads

« Application: 2-thread input-handling model
of Cross Domain Desktop Compositor

(Formalisation: https://covern.org/itpl9.html)

16 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions (Conclusion)

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results
2. Verified compiler
While-language to RISC-style
assembly \
E (Proof-of-concept
for techmque
Impact

1st such proofs carried to assembly-level model by compller

(Formalisation: https://covern.org/itpl9.html)

17 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions (Conclusion)

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results

1. Decomposition principle 2. Verified compiler
for confidentiality-preserving While-language to RISC-style

refinement assembly
_ g Proof effort
= i:,/} almost halved!
] l '7 ‘ , (Technique) (Proof-of-concept
- for techmque

Impact
1st such proofs carried to assembly-level model by compller

(Formalisation: https://covern.org/itpl9.html)

17 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

Our contributions (Conclusion) +Q & A

Goal

Prove a compiler preserves proofs of concurrent
value-dependent information-flow security

Results

1. Decomposition principle 2. Verified compiler
for confidentiality-preserving While-language to RISC-style

refmement assembly
g Proof effort
= /} almost halved!
] l '7 ‘ , (Technique) (Proof-of-concept
- for techmque

Impact
1st such proofs carried to assembly-level model by compller

Thank yOU.’ Please see —» (Formalisation: https://covern.org/itpl9.html)

17 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

. pd
Appendix @m/ D

Differences from Tedesco et al. CSF'16 compilation scheme

e Seq (i.e. ¢y ;; Cy)

a | o

e Assign (i.e. v « e)

e |Store Vr

elfec;C

e |J2|r| C, |Jmpl G,

e While e c e Skip

Nop

e f]zrl c | e Timp

Tedesco et al. CSF’16

18 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

. 7~
Appendlx | DATA | &
Differences from Tedesco et al. CSF'16 compilation scheme

e Seq (i.e. ¢y ;; Cy) e LockAcq | New'i
C1 I Cy LockAcq |
. ASSIQfl'(f‘é/\;—-(—m;)~~~ }Fixed' * LockRel |
[e [Storevr LockRel |
e Ife clxc"2 """"""
e |ler| C; |Jmpl C
‘e Whileec Simplified! + Skip

18 Verifying that a compiler preserves concurrent value-dependent infoflow security | Robert Sison and Toby Murray

