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Abstract model check this abstraction. If the abstraction is too coarse
it will be further refined. Finding the right level of abstrac-
Software has been under scrutiny by the verification tion is challenging and the subject of much research. With-
community from various angles in the recent past. There out user interaction, software model checking approaches
are two major algorithmic approaches to ensure the cor- are often not mature enough yet to cope with real life code
rectness of and to eliminate bugs from such systems: softefficiently [26, 22].
ware model checking and static analysis. Those approaches Static analysis, on the other hand, works on the syntac-
are typically complementary. In this paper we use a model tic level of the program. As such, any finite program and
checking approach to solve static analysis problems. Thisjts control flow graph results in a finite state system and
not only avoids the scalability and abstraction issues typi- is, therefore, suitable for algorithmic analysis. While sta-
cally associated with model checking, it allows for specify- tic analysis is known to scale well to large code bases, it is
ing new properties in a concise and elegant way, scales welllimited by the number of properties to be checked and the
to large code bases, and the built-in optimizations of mod- definition of new properties is often cumbersome [13]. In
ern model checkers enable scalability also in terms of num- contrast, model checking allows for a convenient and often
bers of properties to be checked. In particular, we present concise specification of program properties and optimiza-
Goannathe first C/C++ static source code analyzer using tions in the checker technology makes it less affected by the
the off-the-shelf model checker NuSMV, and we demonstrat&yumber of properties checked within the same model.
Goanna’s suitability for developer machines by evaluating | this work we present an approach that combines the
its run-time performance, memory consumption and scala- pest of both worlds by using the off-the-shelf model checker
bility using the source code of OpenSSL as a test bed. NuSMV [6] and its specification language to define and
check static analysis type properties on large C/C++ pro-
grams. This allows for a concise and flexible specification
1 Introduction of properties and an analysis scalable both in the size of the
code base as well as the number of properties analyzed.
The application of formal verification techniques to soft-
ware is hard. While full functional correctness can be
shown by proof-based methods such as interactive theoremContribution. We demonstrate that model checking is
proving, the effort is high—i.e., there is substantial expert @ practical and scalable solution to solve static analysis
manpower needed over an extended period of time. Thisproblems. We demonstrate the practicality by presenting
is not always practical. Drivers, for instance, have typi- @ method of encoding C/C++ program analysis as model
cally short development times as they need to be supplied inchecking problems for the NuSMV model checker. We
time with the hardware release. Also, ongoing code changedmplement the proposed encoding in our prototype tool
have to be taken care of, creating the demand for automated>0annaand present its architecture. Moreover, we demon-
analysis tools working at compilation time. strate that Goanna is competitive with respect to run-time
Model checking [8, 25] and static analysis [21, 23] are performance, memory consumption and scalability.
automated techniques promising to ensure (limited) correct-  The ability to directly use all the optimizations built into
ness or to find bugs in software. Software model checking modern model checkers, automatically obtain a counterex-
typically operates on the semantic level of a program. The ample trace in case of a property violation, and add more
common approach is to find a finite state abstraction and tosemantic-based software model checking techniques in the



future makes the proposed approach a viable alternative to There are other commercial static analysis tools, e.g. [14,
existing technology. 19, 15, 20] which, however, mostly do not support specifi-
The remainder of this paper is organized as follows: In cation languages such as Metal or CTL. This limits their
Section 2 we discuss a number of related approaches in thigpplicability for system development.
area. In Section 3 we give a presentation of our approach A semantic model checking approach to software ver-
and illustrate this by an extended example in Section 4.ification is realised in SLAM [1] and its successor SDV,
We give a detailed runtime evaluation of our approach by a tool used to verify device drivers. SLAM is a suite
checking the source code of OpenSSL and present a preef tools for counterexample-guided abstraction refinement.
liminary evaluation on precision in Section 5. In Section 6, SLAM starts with a coarse Boolean program abstraction
we discuss current limitations of our tool, ideas for future that is subsequently refined given predicates discovered

work and our conclusions. from counterexamples in the abstraction, until an abstrac-
tion is found that satisfies the property. Other tools that im-
2 Related Work plement counterexample-guided abstraction refinement are

Blast [16] and Magic [4].

Atool for bounded model checking of ANSI-C code was
presented in [7]. This tool, called CMBC, can be used
to verify safety properties, and also to verify an ANSI-C
model of a circuit against a specification in a hardware de-
scription language such as Verilog. The tool unrolls the pro-
gram and checks with a SAT-solver if there exists an error
Srace up to the given depth. CMBC is particularly useful for
debugging since it can find all errors up to a certain depth
quickly.

The Eau Claire tool [5] makes use of automatic theorem
%joving. It is an extended static checker for C, based on

The basic ideas of solving static analysis problems
by model checking were first developed by Steffen and
Schmidt [28, 27]. Their main focus is on developing a
safe approximation of the program’s behaviour and, there-
fore, checking for a safe subset of CTL, iqualified safety
properties. The drawbacks of this approach are that saf
approximations of real C/C++ programs including pointer
arithmetic are either hard to compute or too coarse, leading
to unnecessary over-approximations.

We have a stronger focus on the effectiveness of the
analysis and abandon in some cases soundness as defin
by Steffen. This means, we treat programs purely as a set 0
syntactic objects on the program’s CFG and allow to check
any CTL property on that level. While our analysis is sound
on this syntactic level it is not necessarily a sound abstrac-
tion of the program’s semantics. However, this approach
has been followed by others (e.g.,[12, 11]) and proves to be
well-suited for checking real-life systems.

A similar approach to ours can be found in the Uno
tool [17] and its later development into Orion [11]. The
analysis is also done by model checking on a syntactic level.
However, the authors do not use an off-the-shelf model
checker, but implement model checking techniques. Orion
is currently more limited to checking for three properties:
uninitialised variables, nil-pointer dereferences and out-of-
bounds array indexing. The tool currently has a strong fo- . )
cus on achieving a good signal to noise ratio by incorpo- 3 Syntactic Software Model Checking
rating symbolic solver techniques. Goanna focuses on a
wider range of properties, with future plans to include user-  In this section we present details of how to encode static
defined rules and embedded assembly. It will be interestinganalysis properties by model checking in a practical way.
to compare future versions of both tools. The goal is to determine syntactic properties of C/C++ pro-

Related to our philosophy is, e.g., the work in the static grams ranging from uninitialized variables to null pointer
analysis community done by Engler et al. [12]. The authors dereferences. Given a prografand a property the task
use meta-level compilation (MC) which allows system im- of checking whetheP satisfiesp, i.e., P = ¢, is reduced
plementors to build their own application-specific compiler to checkingP; = ¢, where P is a finite syntactic repre-
extensions based on théetal language. Those extensions sentation ofP and¢, a syntactic encoding of.
are used as specifications for searching the abstract syntax Although we use model checking for our analysis, the
tree, control flow and data flow graph. The approach hastype of properties we are addressing are similar to those in
been further developed into a commercial product [10]. static analysis. For instance, we check whether a variable

e earlier ideas in [18]. The tool translates C code into a
set of guarded commands which will then be transformed
into verification conditions. These verification conditions
are checked automatically by the Simplify theorem prover.

Based on abstract interpretation [9] are the Poly-
Space [24] and Asée [3] static analyzers. They aim at
proving the absence of run-time errors in programs writ-
ten in the C/C++ programming languages. Astanalyzes
structured C programs, without dynamic memory alloca-
tion or recursion. Abstract interpretation is particularly well
suited for array bound checking and alike, as it provides a
semantic framework to capture domains and the operations
on them, but suffers from high computational costs result-
ing in much longer analysis times.



is initialized, but not, e.g., whetherholds the correctcom- 3.2 Model Construction

putation result by the end of the program execution. The

latter often requires more information about the program’s  To construct a model from the program, we require a

semantics. formal notion of an abstract syntax tree (AST) and a labeled
As model checking is the analysis of a labeled graph (a graph. We define a labeled graph/tree and an attributed tree

Kripke structure over atomic propositions) with respect to as follows.

some formula, typically in temporal logic, we have to de-

velop: Definition A labeled graph(L, E, ;) over the alphabet

Y1 is afinite and directed graph, wheleis a set of nodes,
1. Atemporal logic formula expressing the desired prop- E € L x Lis an edge relation between the nodes, and
) ur : L — X is a node labeling function.

erty. Alabeled treés a labeled grapll” = (L, E, 1) if it has
a single root nodeoot(T") for which we have the following:
For each nodé < L there exists exactly one path from the
root to the node, i.e. exactly one sequenhge. ., !, such
thatly = root(T), l, = I, and (l;—1,1;) € E, fori =
1,...,n.

Anattributed tre€ L, E, 1, 1g) over the alphabet,
In the following we describe our approach to a path- gndy.;; is a labeled tree where there is an additional label-

sensitive, intra-procedural analysis in the order of the dif- jng functionu, : L — ¥4, assigningattributesto nodes.
ferent steps above. Throughout the remainder of this paper

we will use absence of uninitialized variables as an exam-Given two nodeg$; andi, of a labeled tre€L, E, 1), we
ple property, because it is simple in comparison to other call /; the parentof /5 andi, thechild if (I1,l2) € E. If
properties that we check, but serves well to demonstrate outthere exists a (non-empty) path framto 5, I is called
approach. ancestorof l,, andl, is adescendanof /;.

An AST can be seen as an attributed tree where the nodes
are labeled with program statements and (sub)expressions
while the attributes describe the role of a node’s branch.
E.qg., the construct in Figure 3(a) shows part of an AST for
] ) ) ) an if-then branching. The attributes describe whether the

~ Under the assumption that we can identify atomic propo- g ptree is the if-branch, the condition, or the next instruc-
sitionsdecl,;, used, andassigned,, representing program  tion of its parent node. The labels then describe the kind
locations where a variable is declared, used, or assigned ¢ siatement or expression of the condition or the statement
a value respectively, we can specify that this variable is al- following the if-then.
ways initialized before it is used as follows in CTL: From the AST we can construct in a straightforward
manner the control flow graph (CFG). Note that a CFG
AG decl, = (A —used, W assigned,) Q) does typically not contain all the information available in
the AST, only the control structure down to the level of

This means we require that on all program paths if a vari- statements, but not the structure of expressions, types, and
able z is declared it must not be used until it has a value constant values.
assigned or it will not be used at all. We use theak un- A CFG is a graph, typically with a single root node.
til operator W here to include the second possibility. The |ater we add labels making it a labeled graph. We denote
latter can also point to unused variables, which is checkedthe labeled CFG of an AST by CFG+. The labels rep-
separately. resent whether certain atomic propositions hold in a node.

In the same style we can express other properties on corE.g., if a particular variable is assigned a value, if it is used
rect pointer handling, variable usage or memory allocation on the right-hand side of an assignment, or if it is derefer-
and deallocation. Moreover, it allows specifying application enced and so on.
specific properties to handle general programming guide- In our framework, these labels are associated with tree
lines, API-specific rules or even hardware/software inter- patterns on the AST. We define the syntax of a query lan-
face rules for drivers. guage to match tree patterns as follows:

In the remainder of this section we describe how to map
programs to transition systems labeled with atomic propo-
sitions such as the ones above and how to derive the labels? == €|0[og|or| | [|" [P/P|PUP|P[Q]
themselves from a program. Q Pllabel =op |attr =04 | QANQ | QVQ

2. Agraph representing the C/C++ program, labeled with
propositions relevant to evaluate the property.

3. Atranslation to a model checker.

3.1 Temporal Logic Properties over Pro-
grams.



whereo;, € X ando 4 € X 4.

Given an (attributed) tre® and a nodd, a pattern de-
fines a set of nodes in the subtree rooted ifhe patterre

defines the nodkitself, ) the empty set, and pattesry, and l l

o, children labeledr 4 or o, respectively. The patterns

and|* stand for the children and descendants, gfandu language

for concatenation and union. Finally, patté?f(Y] filters all 1 | |

nodes satisfying). compute
This tree query language is the downward, recursive compute CFG annotations

fragment of the language defined in [2]. We refer the reader \ /

to this paper for formal semantics and a discussion on ex- e

pressiveness. The only difference is that we allow for two input

types of labels, which however, does not add expressivity. 1

Given an atomic propositiop, we associate a tree pat-
tern P with it. We label every nodéthat matches, in the
AST T with respect to the root node @f, with p. In the
case that is not inCFGr, we label its closest ancestor in l
T which isinCFGr.

error reporting

Example 1 Take as an example an atomic proposition

decl,,, used to label declarations of variahle This propo-

sition is associated with pattert Decl[Var:X], ie. it Figure 1. Model checking approach for stati-
matches all nodes (descendants of the root node) inthe AST  cally analysing C/C++ code.

labeledDecl, that have a child labeledar:x. Those nodes

will then be labeled withiecl,, in the CFG.

3.3 Translation to NuSMV a I_apel is evaluated to true iff it has been a label in the
original labeled CFG.

In order to check our generated model automatically e CTL; is the set of CTL properties in NuSMV syntax.
with respect to the defined properties, we developed a trans-
lation to the NuSMV model checker. In this section we [N the subsequent Section 4 we will give an example of
sketch how to translate a labeled CFG and a CTL formula the actual NuSMV code which is a syntactic expression of
into a simple NuSMV model. the above model.

For a given C/C++ functiornf we translate the corre- .
sponding labeled CFGL, Ey, u1¢) into asimple NuSMV 3.4 Architecture

mode] NuSMV; = (vary, Ay, Def,, CTL;), where ) ) ) o
The architecture of our approach is outlined in Figure 1.

e vary is oneenumerated type variable in NuSMV over Given a C/C++ program, the only interaction needed from
the set of types € L;. Enumerated type variables are the useris to
implemented efficiently in NuSMV and guarantee a ) o
much smaller state space than, e.g., using one boolean 1+ Provide a CTL specification, and

variable for each control location. 2. define the atomic proposition of the specification in

o Ay = {(I,Sucd))|l € Ly, Sucél) = {I|(I,1) € terms of queries as described in Section 3.2.

Ey}}. This means, the CFG transition relationistrans-  The translation of a program into the CFG, the pat-
lated into a transition relation, where the target for each oy matching, the subsequent labeling, the translation to
transition is the set of locations we possibly can branch NysMv, as well as the error reporting, are all fully auto-
to. This is according to NuSMV's syntax and does not matic. This reduces the burden on the user to a minimum

change the original CFG transition relation. and for generic pre-defined properties to zero.
o Def, = {defindp) = {I|u(I) = p.l € Ly }Ip € Ty}.
Where everylefindp) is aDEFINE declarationopin 4 Example
NuSMV. A define declaration is a space efficient way
to declare, e.g., that a propositional variapl&olds This section presents an example to illustrate the pro-
exactly in a particular set of locations. In our case, that posed approach of combining syntactic checking with



98: Plus

V \Ihs

78: Exp 72: Exp 63: Con
; exp K
87: Modif
lhs
44:Var: b rhs

36: Var: a 105: IndirectRef

exp

48: Var: p

@)

12: Return

(b)

Figure 3. Fragments of (a) the attributed abstract syntax tree (AST), and (b) the annotated control
flow graph (CFG).

void f(int x) {

int a, b;
int  *p;
p = (int =*)
malloc(sizeof(int));
*p = 42,
if(x == 0) {
free(p);
a = *xp;
}
b =a+ *p;

}

Figure 2. Source code example

model checking. Consider the contrived code fragment in
Figure 2, which is obviously flawed. Not only does it con-
tain a potential access of an uninitialized variatdeir

line 11), but also dereferences a pointer that has already
been freedf in line 9), and assigns a value to a variable
that is never used afterwards iy line 11).

We will illustrate the labeling of the AST and CFG, the
generation of NuSMV code that implements the checks and
the ease of adding properties to Goanna. Again, we demon-
strate it in the context of uninitialized variables for the sake
of simplicity.

4.1 Annotation of CFG

The program analysis builds on an annotated control
flow graph. Generating the control flow graph—uwithout
annotations—for the code fragment is straightforward. A
fragment of the AST is depicted in Figure 3 (a) and the re-
sulting CFG in Figure 3 (b). Each node is labeled with an
ID and a label. The IDs refer to identifiers in the intermedi-
ate format generated by the parser and are used for technical
reasons only. The attributes of nodes in the AST are used
to label the edge with the parent node in Figure 3 (a). Only
nodes on certain levels in the AST will be used to build the
CFG, in this example nodes 59, 63, 72 and 78.



The atomic propositions that are used as labels on theMODULE main
CFG are generated, as mentioned before, in two steps. In .
the case of uninitialized variable analysis, the procedure in- VAR location @ {loc26, loc34,..., loc12 }
troduces three labels for each variable. E.g., the declaration _
of variablea in line 2 of the code fragment, for example, Next(location) :=

leads to the introduction of the labeldecl,, used, and case
assigned,. Each of these labels will be an atomic proposi- location = loc26 : {loc34 };
tion in the model checking framework. location = loc34 : {loc39 };
Next, we describe the associated tree patterns for each e
proposition. Propositiotiecl,, used to label declarations of location = loc63 : {loc78, loc72

variableq, is associated with pattefif Decl[Var:a]. Only
node 26 in the CFG matches this pattern, corresponding to €S&C
the declaration in line 2 of the source code, and will be la-
belleddecl,. DEFINE

Propositionused, will label nodes that use the vari- decl a := location in {loc26 };
ablea. These are nodes which are either (i) labelRéds, used.a := .|_OC|atIOI’l_ in {|0C|86 I
Postincor Preing and have a child labelle¥ar:a , or assign -a := location in {loc72 };

(i) nodes labeledModif with a righthand-side chil&ar:a.
The corresponding pattern j$ (PlusU Postincu Preincu
..)[Var:a] U |* ModiflVar:a[attr = "rhs”]]. Node 98 in
Figure 3 (a) matches this pattern. However, this node is not Figure 4. NuSMV code (fragment)

part of the CFG. Hence, we backtrack to the nearest ances-

tor which is part of the CFG, in this case node 72, and label

it used,. Node 72 corresponds to line 11 in the code frag- on which a is used, but not assigned any value be-

SPEC AG decl.a => (A "used _a W assign _a)

ment. forehand. The prototype tool Goanna will warn the
Finally, for propositionassigned, we look for nodes  user with: ‘Warning: Variable ‘a’ might be

that modify a variable which have labels suchMedif, uninitialized " and automatically produces a coun-

Postinc or Preinc and a left-hand-side successdar:a. terexample with the sequence of line numbers 2, 3, 5, 6, 7,

This corresponds to the pattefrf (Modif U Postincu 11. Note that this analysis points tgatentialbug. There

Preinc)[Var:ajattr = ”lhs”]]. Node 86 will be labeled are other properties that, if violated, point to definite bugs.

assigned,, because it is the nearest ancestor of a node that

matches this pattern. The described process results in the; g Property Implementation in Goanna
labelled CFG depicted in Figure 3 (b).

. In order to implement such a property in our Goanna
4.2 Model Checking with NuSMV tool, we only need to identify the nodes of interest (as de-
scribed in Section 4.1), describe their relationships in CTL
Parts of the NuUSMV code resulting from the translation formulas and print these formulas in NuSMV syntax to
of the labelled CFG are shown in Figure 4. As described NuSMV's input file (as described in Subsection 4.2). An
in Section 3.3 we introduce one enumerated type variable,implementation of our example property is shown in pseudo
i.e.,location , ranging over the control locations (i.e. the code in Figure 5. In the code, we first find the set of all
nodes in the CFG), describe the transition relation as a sewariables that are declared in a function, because these are
of transitions from locations to a set of locations, and use the ones that need to be checked for proper initialization.
DEFINE declarations to associate labels to certain loca- For each of these variables, we then print the CTL specifi-
tions. Note that, for clarity of presentation, we use the weak cations to the NuSMV input file (the functioNuSMV()
until operandMn the CTL specification, which does not ex- simply prints text to NuSMV'’s input file). In the next
istin NuSMV syntax, but can be equally expressed through step, for every variable in the set of declared variables, we
other existing operators. search for the set of nodes in the AST where the variable
Using NuSMV for checking property (1) (described is assigned a value and where it is used, respectively. For
in Section 3.1) on the annotated CFG now reveals athis search we use the functidgindAST() that identi-
violation of the NuSMV specification from Figure 4. fies nodes in the AST according to specific patterns. Fi-
Goanna automatically examines the violation reported by nally, from these three sets, we get the corresponding sets
NuSMV and concludes that there is an incorrect use of locations of the respective nodes in the CFG by using
of variable a—in fact, there is a path in the program the functionCFGlocations() . That function translates



# Find all variables declared in a function: 5 Evaluation

Setyarpect = FiNdAST(type=var, label=decl);
# Print specification for each declared variable:
foreach $var in Set apecl

{

5.1 Implementation

NUSMV( "SPEC AG decl $var -> Our implementation is written in OCaml and we use
(A lused $var W assign $var )" ): NuSMV 2.3.1 as the back-end model checker. The current

implementation is a prototype working on intra-procedural

NuSMV( "DEFINE" ); analysis and is not yet optimized towards performance.

foreach $var in Setyapec { However, it provides the reader with a first impression with

# Identify nodes that use or assign $var: respect to speed and scalability.

Set varassigned = FindAST(var= $var , attr=lhs, At the current stage, we have 15 different checks im-

label=Modif|Postinc|Preinc]...); plemented. These checks cover the correct usage of mal-

Set yaruseq = FINDAST(var= $var , attr=rhs,
label=Modif)
+ FindAST(var= $var , label=Postinc|Preinc);
# Output locations of propositions:

loc/free operations, use and initialization of variables, po-
tential null-pointer dereferences, memory leaks and dead
code. The CTL property is typically one to two lines in the

program and the description query for each atomic proposi-

NuSMV( "decl _$var := location in {"
+ CFGlocations( Setyapes ) * " B ) tion is around five lines when covering a lot of exceptions.
NuSMV("assigned _$var := location in { This is still rather short compared to standard static analysis
+ CFGlocations( Set varassigned ) * " H" ) frameworks or meta compilation [12].
NuSMV(‘used _$var := location in {"
, + CFGlocations(  Setvaused ) + " }i" ); 5.2 Evaluation Principles
We evaluate our approach regarding run-time perfor-
mance, memory usage, and scalability. The run-time of the
Figure 5. Pseudo code to create a NuSMV tool should be reasonably low and integrate well into the de-
code fragment for the “uninitialized vari- velopment process, e.g. it should be within the same order
ables” property of magnitude as the compile time. The runtime should scale

well with increasing program size and number of properties.
Also, the memory usage must be within the resource limits
of a typical developer machine or build server.

To evaluate Goanna'’s speed and memory usage, we ap-
ply it to a larger real-world open-source project of realistic

AST nodes to CFG nodes and, if required, backtracks to theSize: TheOpenSSt.toolkitimplementing the Secure Sock-
nearest ancestor node that has a corresponding node in th@tS Layer (SSL) and Transport Layer Security (TLS) proto-

CFG. Then we print the locations to NuSMV's input file.  €0IS (260 kLoC). We build OpenSSL for a Debian Linux 3.1
environment with gcc 3.3.5. Our hardware platform for the

N hat th de d h q b h experiments is a DELL PowerEdge SC1425 server, with an
ote that the code doawot have to describéow the Intel Xeon processor running at 3.4 GHz, 2 MiB L2 cache

check is implemented. In Goanna, we only degcribe the and 1.5 GiB DDR-2 400 MHz ECC memory.
checks that need to be done—the implementation of the

checks s left to NuSMV. 5.3 Run-time Performance and Memory

Usage
This might seem like heavy machinery to check for

uninitialized variables. However, during analysis this prop-
erty is checked for all variables at once. Furthermore, hav-
ing this framework in place enables us to define other syn-
tactic properties easily—e.g., properties for inappropriate
use of dereferenced pointers, or unused variables. Applying
Goanna to the source code example shown in Figure 2 will
warn that the value assigned to variabli line 11 is never
used, that variabl® is never used at all (on a right-hand
side), that variable might be used uninitialized, and that
pointerp is dereferenced after being freed. Lhttp:/Avww.openssl.org/

First, we look at some overall performance numbers. We
measure the wall-clock compile time and compare it with
Goanna'’s total analysis time. Furthermore, we measure the
maximum internal memory consumption of our tool as well
as NuSMV’s memory consumption during the analysis.

The results for one property and for all 15 properties are
shown in Table 1. It shows that the overall analysis time
is well within the same order of magnitude as the compile




Test set Compile | Goanna NusSMv Total (Goanna + NuSMV)
[min:sec] | [min:sec] | [MB] | [min:sec] | [MB] | [min:sec] [MB]

OpenSSL (1 property) 3:07 2:58 | 235 3:07| 11.8 6:05 35.3

OpenSSL (15 properties) 3:07 6:19| 354 5:54| 17.9 12:13 53.3

Table 1. Compile time, run-time and maximum memory usage for Goanna and NuSMV separately,
and for the whole tool chain in total.
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Figure 7. Run-times of the whole Goanna tool
chain with respect to size of input source
files.

Figure 6. Run-times of NuSMV with respect to
size of input source files.

time. In fact, it is twice as long as the compilation for one

property and four times as long for 15 properties. Discussion. There are a couple of pathological cases
Moreover, for the analysis with all 15 properties, out of where NuSMV takes disproportionally long and some
602 source files, only 3.6% took longer than 2 seconds towhere Goanna, i.e., the tree matching, takes very long.
analyze and 99.2% of all files were analyzed in less thanThere are two sometimes interrelated reasons for this: First
5 seconds. The time spent in NuUSMV is mostly negligible of all, Goanna'’s tree matching is impacted by the number
with 98.7% of all files being analyzed in less then 2 seconds. of variables in a program. The current implementation runs

The overall distribution of the runtime with respect to all matching operations for all properties and all variables
the file size is shown in Figure 6 for NuSMV and in Fig- in separate runs, creating a rather large overhead. For pro-
ure 7 for the overall analysis time. Note that the complexity 9rams with few variables, the impact is not significant, how-
of the analysis—and hence its runtime—does not perfectly €ver, when analyzing hundreds of variables it is consider-
correlate with the file size, but the file size is easily under- @ble. An example of this effect can be seen in Figure 7,
standable and typically a measure of interest to the devel-Where the outliner with 70 seconds run-time is caused by
oper. In fact, the complexity of our current implementation @ source file that has a large number of variables. Conse-
is mostly dependent on the number of variables and the sizeduently, we have plans to optimize the tree matching in the
of the CFG. future.

The memory consumption for one as well as for 15 prop-  Secondly, NuSMV is impacted by the number of vari-
erties has been considerably low with 35.3 and 53.3 MB, ables and the complexity of the control structure. More-
respectively. This fits well into the standard memory of a over, the BDD encoding plays a major role. As is typical in
state-of-the-art machine, making this approach well suited BDD-based model checking, run-times are sometimes hard
to be integrated into the standard build process on a develto predict and fluctuate wildly when changing the variable
oper’s desktop machine. order. An explicit state model checker might be more suit-



able for the analysis and we will explore the option in the This enables the integration of model checking into the stan-
future. dard build process, increasing the overall software quality.

5.4 Scalability and Precision Current limitations and future work.  The Goanna tool
is still at a prototype stage. While it is already fast enough

One of the encouraging results of our case study is thatfor practical use, it is far from optimal and there is still
performance scales nicely when adding more properties. Inmuch room for significant performance improvements. One
fact, going from one property to 15 properties only doubles particular aspect is our current implementation of the tree
the analysis time. With an optimized tree matching, we ex- matching algorithm which traverses the tree for each and
pect to further improve this ratio. every subpattern, creating a large unnecessary overhead.

There are two main reasons for this: Some of the labels Another area that hasn’t been addressed so far is path
created for certain properties can be reused. E.g., the labepruning to achieve a higher precision for relaxed properties.
for a variabler being declareddecl,) might be partof sev-  We are planning to take advantage of the model checking
eral properties and as such can be reused. Right now, weypproach by including more semantic-based techniques—

only do this to a limited extend in Goanna. such as predicate abstraction—to rule out infeasible path
The other reason is that NuSMV scales well when adding combinations.

more labels. Since the underlying control structure for one  Finally, while in principle our approach extends to

property and 15 properties is the same—only the numberciassic inter-procedural analysis, we still have to develop
of labels increases—it is not required to run NuSMV more heyristics to deal with the combinatorial blow up in order

often for a larger number of properties. Again, for reasons o keep the analysis to a similar speed as it is for intra-
of the exact BDD enCOding, it is sometimes difficult to pre- procedura| ana|ysis_ We are in the process of Creating a
Cisely predict how Iarge an increase in run-time can be ex- two-pass ana|ysis by making use of summaries which can

pected by adding a certain number of properties/labels. be generated from the intra-procedural stage.
The precision of our analysis is very much dependent on

the exact property encoding. Some of our properties com
in two flavors: A strict version and a relaxed version. The
strict version tends to be an under-approximation of the pro-
gram’s behavior and the relaxed one an over-approximation.
In the case of uninitialized variables, the strict version flags
a violation if a variable is uninitialized oall paths and the
relaxed version reports a violation if the variable is uninitial-
ized onsomepath. The difference is in the path quantifier
of the CTL formula (for all/exists a path).
The strict versions typically create zero false alarms,
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