
Goanna — A Static Model Checker

Ansgar Fehnker1, Ralf Huuck1, Patrick Jayet2?, Michel Lussenburg2∗, and
Felix Rauch1

1 National ICT Australia Ltd. (NICTA)?? and University of New South Wales,
Locked Bag 6016, NSW 1466, Australia

2 Department of Computer Science, Swiss Federal Institute of Technology (ETH),
CH-8092 Zurich, Switzerland

Submitted to:11th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS 2006)

Document Revision: 1.11 Date: 2006-06-05 04:30:37

Abstract. In this work we present Goanna, the first tool that uses an
off-the-shelf model checker for the static analysis of C/C++ source code.
We outline its architecture and show how syntactic properties can be ex-
pressed in CTL. Once the properties have been defined the tool analyses
source code automatically and efficiently. We demonstrate its applica-
bility by presenting experimental results on analysing OpenSSL and the
GNU coreutils.

1 Introduction

Formal design and analysis techniques are successfully applied to hardware. In
fact, model checking parts of the chip design is common practice. In contrast,
the application of industrial strength software design and verification technology
has been much less successful. A lot of work has been done in the area of model
driven design. In particular, the synchronous community has delivered powerful
tools for the specification and subsequent (limited) verification of software. Also,
semi-formal description techniques such as UML are widely used. However, the
application of verification technology to existing and complex software has been
much less successful.

The reasons are manifold: Full formal verification as done by interactive the-
orem proving is expensive. It requires a lot of time and expertise, making it often
impractical for software that has a short life cycle, is not highly safety-critical, or
suffers from a high pressure to market. Algorithmic verification techniques have
to deal with software’s infinite state space, requiring abstraction techniques to
make properties of interest decidable. Suitable abstractions are typically hard to

? This work was carried out while visiting NICTA.
?? National ICT Australia is funded by the Australian Governments Department of

Communications, Information Technology, and the Arts and the Australian Re-
search Council through Backing Australias Ability and the ICT Research Centre
of Excellence programs.



compute and the overall interaction required by the user in order to apply them
to real-life software are often considerable.

One area that has been successful is static analysis. Approaches such as
abstract interpretation, data flow analysis and other static checking techniques
have made it into several industrial strength tools.

In this work we present Goanna, a static analysis tool for C/C++ source
code based on model checking. It uses the NuSMV model checker as the under-
lying verification engine, allows the specification of user defined properties and
scales well to commercial size software. It does not require any user interaction
making it particularly suited to be integrated into the software development
process. Moreover, it is the first step of bringing static analysis and software
model checking closer together by providing one uniform framework.

2 Technology

The basic ideas of solving static analysis problems by model checking have been
first developed by Steffen and Schmidt [1]. While their main focus has been on
developing a safe approximation of the program’s behaviour, we have a stronger
focus on the effectiveness of the analysis and trade this for soundness. As a result
we use full CTL for checking syntactic program properties.

First we define atomic propositions of interest, e.g., whether a variable is de-
clared, used, or assigned a value. For a variable named x we write declx, usedx

and assignedx for the respective propositions. We use a pattern matching ap-
proach to relate certain patterns on a program’s abstract syntax tree (AST) with
propositions of interest. In a second step we automatically extract the control
flow graph (CFG) of a program and label it with the previously determined
propositions.

gcc

C/C++ source

model checker
input

NuSMV

Property

property
language

error reporting remediation

compute CFG
compute
labels

gcc

C/C++ source

model checker
input

NuSMV

Property

property
language

error reporting remediation

compute CFG
compute
labels

Fig. 1. Goanna architecture Fig. 2. Eclipse Embedding

The translation of an annotated CFG into an NuSMV model is rather straight-
forward and the encoding can be done in an efficient way resulting in a small



state space. Properties of interest can then be expressed as CTL formulae over
this model. E.g., checking for uninitialised variables can be expressed as follows:

AG declx ⇒ (A ¬usedx W assignedx)

This means we require that on all program paths if a variable is declared it
must not be used until it has a value assigned or it will not be used at all. We
use the weak until operator W here to include the second possibility. The latter
can also point to unused variables, which is checked separately.

Our tool chain is depicted in Figure 1. We use gcc as a front end, as one of its
features allows us to easily output the AST of C/C++ programs in an intermedi-
ate language. We parse the AST and on the one hand generate the CFG from it
and on the other hand match patterns on the AST, which constitute the atomic
propositions of a CTL formula expressing the desired property. We label the
CFG with atomic propositions where their respective patterns where matched.
Once the patterns and the CTL formula have been specified, the translation of
the C/C++ source code into a suitable NuSMV model and its checking is fully
automatic.

The current implementation is developed in OCaml. It integrates in Makefiles
and thus automatically supports development environments such as Eclipse. A
screen shot of Goanna running in combination with Eclipse can be found in Fig-
ure 2. This enables a seamless integration into the overall software development
process.

3 Application

To evaluate the applicability of our tool, we examine two real-world open-
source software packages: The GNU coreutils3, which provide basic file, shell
and text manipulation utilities (59 kLoC4), and the OpenSSL5 toolkit imple-
menting the Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols (260 kLoC). We analyse the source code of these two packages on a
DELL PowerEdge SC1425 server, with a 3.4 GHz Xeon processor and 1.5 GiB
of memory.

Analysing the whole source with our current Goanna tool (which has not yet
been optimised) took slightly less than 2 minutes for the coreutils and slightly
less than 29 minutes for OpenSSL. The latter is somewhat distorted by a single
pathological file that takes almost 12 minutes to analyse. In practice, analysis
times are typically much shorter, not only because the analysis can be done
incrementally on the set of recently changed files only, but also because a more
in-depth study of Goanna’s analysis times shows that a large majority of source
file is analysed quite quickly. In fact, 72% of all source files in the coreutils are

3 http://www.gnu.org/software/coreutils/
4 LoC = Lines of Code, kLoC = 1000 Lines of Codes
5 http://www.openssl.org/



analysed in less than 1 second and 95% under 5 seconds. Similarly, for OpenSSL
83% of all files are analysed in under 1 second and again 95% under 5 seconds.

Note that the current prototype has not yet been optimised for lower ex-
ecution times. There is still a lot of room for optimisations, for example by
optimising the way we search the AST for interesting patterns (XXX), the li-
brary we use to conduct the search on the AST (which is convenient but not
fast), or by reducing the chunk size of the source code that NuSMV is invoked
with.

Looking at the memory requirements of our tool we find that the maximum
memory consumption of the analysis is about 65 MiB to analyse the coreutils
and about 113 MiB for OpenSSL respectively. This is in both cases much below
the limit set by todays PCs used by developers.

The above numbers show that the tool is already quite usable in practice. A
full evaluation of course requires also an analysis of the precision of the tool, with
looking at the number of real bugs found and the number of false positives. Such
a study is very time consuming and we are still in the process of qualitatively
evaluating Goanna regarding its precision. Preliminary results indicate that the
precision of our approach is comparable to standard static analysis.

4 Conclusion

In this work we presented Goanna, the first static analyser purely based on an
off-the-shelf model checker. We demonstrated that the approach scales well to
real-life software making it suitable for the integration into the overall software
development process.

While Goanna is fast, it is not yet more precise than traditional static analy-
sis. However, we anticipate to improve on this by incorporating more semantic-
based software model checking techniques such as predicate abstraction. The
foundation of this integration has been laid by having a uniform framework for
static analysis as well as traditional model checking.

References

1. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: SAS ’98: Proceedings of the 5th International Symposium on Static
Analysis, London, UK, Springer-Verlag (1998) 351–380


