Analysing Embedded System Software
—Extended Abstract—

Ansgar Fehnker, Ralf Huuck, Felix Rauch, and Sean Seefried

National ICT Australia Ltd. (NICTA)* and University of New South Wales,
Locked Bag 6016, Sydney NSW 1466, Australia

Abstract. The verification of real-life C/C++ code is inherently hard.
Not only are there numerous challenging language constructs, but the
precise semantics is often elusive or at best vague. This is even more
true for systems software where non-ANSI compliant constructs are used,
hardware is addressed directly and assembly code is embedded. In this
work we present a lightweight solution to detect software bugs in C/C++
code. Our approach performs static checking on C/C++ code by means
of model checking. While it cannot guarantee full functional correct-
ness, it can be a valuable tool to increase the reliability and trustworthi-
ness of real-life system code. This paper explains the general concepts
of our approach, discusses its implementation in our C/C++ checking
tool Goanna, and presents some performance results on large software
packages.

1 Introduction

Showing the full functional correctness of system software written, e.g., in C/C++,
is a major challenge. It requires a precise understanding of the underlying se-
mantics, typically needs to include an abstract hardware model, and has to give
a full functional proof. There are a number of projects currently undertaking this
task [1J2I3] supported by interactive theorem provers. While this is the only way
to guarantee the full correctness of a program, it requires substantial resources
both in time as well as in the number of highly qualified people.

On the other hand, commercial system software has a high pressure to mar-
ket, needs to run on various platforms and is rewritten frequently, making the
above approach even more challenging. There are a number of lightweight analy-
sis approaches that seek to complement full verification by detecting software
bugs at the coding stage and, thus, increasing the reliability and trustworthiness
of the code. Those tools make a limited but practical contribution to program
correctness and can support full verification by reducing property violations in
early stages.

* National ICT Australia is funded by the Australian Governments Department of
Communications, Information Technology and the Arts and the Australian Research
Council through Backing Australias Ability and the ICT Research Centre of Excel-
lence programs.

2 A. Fehnker, R. Huuck, F. Rauch and S. Seefried

The model-checking community has made significant advances in recent years
to cover realistic C/C++ programs and produced a number of powerful tools
[4)56l7]. However, they are not yet well-suited for real-life embedded system
code [8l9]. On the other hand, commercial static analysis tools [10/1T12/13]
cope well with most C/C++ code and make a valuable contribution to software
correctness. In contrast to model checking tools, static analysers typically do not
allow for any user-defined specifications, but rather implement a set of indepen-
dent analysis heuristics or allow specification which are less expressive than the
temporal logics used by model checkers.

In this work we present a static analysis approach based on model checking.
While we retain the flexibility and power of temporal logics specifications, we are
able to handle any parsed C/C++ code in a uniform manner. In particular, we
present the underlying idea of translating C/C++ checks into model checking
properties, which can then be checked by one single analyzer, instead of a set
of static analysis heuristics. In our case we use the NuSMV [14] model checker
as back end. Moreover, we present some implementation details of our checker
Goanna and its performance on the source of large, real-life open-source software
packages.

Section [2 describes our underlying framework, while Section [3| presents some
of our performance results and Section /4 discusses the current state of our re-
search as well as ongoing and future work.

2 Static Analysis by Means of Model Checking

In this section we describe how to statically check properties of C/C++ source
code by means of model checking. This approach has been inspired by [15/16]
and is also followed by [17/I8§].

Using a model checker for solving static analysis problems has a number of
advantages. All properties can be expressed in a single, flexible analysis engine.
This means that it is easy to add new checks by adding new checking properties.
In addition, the analysis scales well with increasing number of properties. The
details of our path-sensitive, intra-procedural analysis can be found in [19].

The basic idea is to annotate the control flow graph (CFG) of a program with
atomic propositions of interest. In order to check, e.g., for uninitialised variables,
we can identify atomic propositions decly, read, and write,, representing pro-
gram locations where a variable ¢ is declared but not initialised, where it is read
from or written to, respectively, and mark those locations in the CFG accord-
ingly. The atomic propositions are identified by purely syntactic criteria on the
abstract syntax tree (AST) of the program by means of a pattern language. We
define patterns for each proposition, e.g., a variable is written to if it occurs on
the left hand side of an assignment statement and so on. Once identified, the
proposition is placed on the node in the CFG most closely corresponding to the
nodes in the AST where it was identified.

An example of the resulting annotated CFG can be found in Figure [1. This
representation is already very close to a Kripke structure and we can model check

Analysing Embedded System Software 3

read_q

Fig. 1. Annotated CFG

that structure for properties of interest. For instance, checking for uninitialised
variables can be expressed in CTL as:

AG decly = (A —ready, W write,)

This means we require that on all program paths if a variable ¢ is declared
it must not be read until it has been written or it will not be written at all. We
use the weak until operator W here to include the second possibility. The latter
can also point to unused variables, which is checked separately.

In the same style we can express other properties on correct pointer handling,
variable usage or memory allocation and deallocation. Moreover, it allows spec-
ifying application specific properties to handle general programming guidelines,
API-specific rules or even hardware/software interface rules for device drivers.

Once the patterns relevant for matching atomic propositions have been de-
fined and the CFG has been annotated, it is straightforward to translate the
annotated graph automatically into the input format of a model checker. Adding
new checks only requires one to define the property to be checked and the pat-
terns representing atomic propositions. All other steps can be fully automated.

Although this framework was developed in first instance for C/C++ it can
be also extended to deal with embedded assembly code. This is important for
the embedded systems space, since interaction with the hardware is frequently
implemented as embedded assembly code. In particular, we take C/C++ and
ARMv6 assembly interface information for our analysis into account, check for
compliance of embedded assembly code with its C/C++ interface, and perform
various checks on the pure assembly level. The combined analysis of C/C++
code with embedded assembly code enhances, in addition, the precision of the
analysis.

4 A. Fehnker, R. Huuck, F. Rauch and S. Seefried
3 Implementation and Evaluation

The aforementioned approach has been implemented in our program analyser
Goanna, using the open source model checker NuSMV [14] as a generic back-
end analysis engine. The surrounding code for pattern matching structures of
interest, property definitions, CFG generation, translation into NuSMV, and
representation of analysis results is written in OCaml. Moreover, Goanna can
be invoked just like the gee/g++ compiler and, therefore, integrates seamlessly
into standard development environments such as Eclipse (cf. Figure [2)).

igate Search Project Run Window Help

= ARG ARl < - R S0 SO R IR R A el & |[EC/C++
[s example.c % o Makefile | Gl gifi.c)| R Problems ~ B % 3~ =0)
ipl = (int *)malloc(sizeo1ﬂ9‘ 0 errors, 11 warnings, 0 infos
ip2 = (int *)malloc(sizeol [Description
EiH1 = 05 & Dead code found
& Missing return statement
if(argc == 0) { 5 Variable " a' might be uninitialized
a= 0; & Variable *b' is uninitialized
free(ipl); & Value assigned to variable ‘¢’ never used
c = *ipl; ‘ & Variable “ipl' is used after free
} & "ipl’ might be NULL
E = 8y & Value assigned to variable " ip2' never used
c=b; 5 Variable *ip2' is unused
i £ = s C++ = 4 Execution order unspecified involving variable ‘¢!
q . @ Loop variable "i' is modified inside the loop
if(*ipl == 0) {
i, = O
return i;
i++; =]
N i I I 3

| Loop variable " i' is modified inside the loop

Fig. 2. Eclipse integration of Goanna

We evaluated Goanna on a number of open source packages ranging from
highly optimized system software such as the L4 microkernel* to large application
code bases such as the 260 kLoC? OpenSSL package.

For an unoptimized version of Goanna some run-time results for OpenSSL
are shown in Figure [3l Tt shows that over 80% of all files are analyzed within 1
second and that 99% of all files are analyzed within 5 seconds. The whole analysis
takes less than 15 minutes. Proportionally, the time spent purely in NuSMV is
mostly negligible with 98.7% of all files being analyzed in less then 2 seconds.

The run-times of Figure |3 are based on checking for 15 properties ranging
from simple uninitialized variables, over potential null-pointer dereferences, to
memory leaks. It is worth to mention that increasing the number of properties
typically scales well in our framework as it only increases the number of labels
and property specifications in the same NuSMV model, which is handled well by

1 http://14hq.org/
2 LoC = Lines of Code

http://l4hq.org/�

Analysing Embedded System Software 5

100%

800

Analysis time [s] (without top 8 / 1% of outliners)

Fig. 3. Run-times for Goanna analysis on OpenSSL source files

the model checker. For instance, increasing the number of properties from one
to 15 only doubled the overall analysis time.

Moreover, we found that the analysis time is not only well within the same
order of magnitude as the compile time, but that the memory requirements of
the analysis fit easily in the RAM of current developer machines.

The analysis of C/C++ code with embedded assembly code was evaluated for
Pistachio 0.4 implementation® of L4, compiling for an ARM SA1100 architecture.
It contains 54 C++ files, two of which have embedded assembly blocks (3.7%),
and they include a total of 72 header files, of which 10 have embedded assembly
blocks (13.8%). The additional assembly analysis lead to a modest increase from
75.9 seconds to 77.3 seconds, which is an increase of only 1.4 seconds or 1.8%.

4 Conclusion

Summary. In this work we presented our framework and results on model check-
ing system software by means of static analysis. We showed how to easily encode
static checks as model checking properties, providing the basis for an extend-
able and flexible checker. Moreover, we implemented our analysis framework in
Goanna, the first static checker using NuSMV as its analysis engine, and pre-
sented some run-time and scalability results. We showed that this is a viable
solution that can be integrated well in the software development process.

Ongoing and Future Work. Currently, we are working on improving the precision
of the analysis. Future work will focus on further increasing the performance of
Goanna, integrating a full inter-procedural analysis and defining a user interface
for property specification.

3 http://14hq.org/

http://l4hq.org/�

6 A. Fehnker, R. Huuck, F. Rauch and S. Seefried

Acknowledgements We thank Bernard Blackham, Jorg Brauer, Patrick Jayet and
Michel Lussenburg for their implementation efforts and general contributions.

References

1. Tuch, H., Klein, G., Heiser, G.: OS verification — now!, Santa Fe, NM, USA (2005)
7-12

2. Hohmuth, M., Tews, H.: The VFiasco approach for a verified operating system. In:
Proc. 2nd ECOOP Workshop on Programm Languages and Operating Systems,
Glasgow, UK (2005)

3. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of
operating system kernels. In: Proc. 18th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs’05), Oxford, UK (2005) 1-16

4. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: POPL. (2004) 232-244

5. Ball, T., Rajamani, S.K.: The SLAM Toolkit. In: Intl. Conf. on Computer Aided
Verification (CAV ’01), London, UK, Springer-Verlag (2001) 260-264

6. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2004).
Volume 2988 of LNCS., Springer (2004) 168-176

7. Chaki, S., Clarke, E.M., Groce, A., Strichman, O.: Predicate Abstraction with
Minimum Predicates. In: CHARME. (2003) 19-34

8. Schlich, B., Kowalewski, S.: Model checking C source code for embedded systems.
In: Proc. of the IEEE/NASA Workshop on Leveraging Applications of Formal
Methods, Verification, and Validation, NASA /CP-2005-212788 (2005)

9. Miihlberg, J., Liittgen, G.: BLASTing Linux code. In: Proc. of the 11th Interna-
tional Workshop on Formal Methods for Industrial Critical Systems (FMICS 06).
Volume 4346 of LNCS., Springer-Verlag (To appear)

10. Coverity: Prevent for C and C++. (http://www.coverity.com)

11. Gimpel Software: Flexelint for C/C++. (http://www.gimpel.com/html/flex.htm)

12. Klocwork: K7. (http://www.klocwork.com/products/klocworkk7.asp)

13. Microsoft: Prefast. (http://www.microsoft.com/whdc/devtools/tools/PREfast.mspx)

14. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: CAV (2002). LNCS 2404, Springer (2002)

15. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract in-
terpretations. In: Intl. Symposium on Static Analysis (SAS ’98), London, UK,
Springer-Verlag (1998) 351-380

16. Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’98), New York, NY, USA, ACM Press (1998)

17. Holzmann, G.: Static source code checking for user-defined properties, Pasadena,
CA, USA (2002)

18. Dams, D., Namjoshi, K.S.: Orion: High-precision methods for static error analy-
sis of C and C++ programs. Bell Labs Technical Memorandum ITD-04-45263Z,
Lucent Technologies (2004)

19. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model checking soft-
ware at compile time. In: Proc. of the 1st IEEE & IFIP International Symposium
on Theoretical Aspects of Software Engineering (TASE), Shanghai, China (2007,
to appear)

