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Abstract—Advances in formal software verification has pro-
duced an operating system that is guaranteed mathematically
to be correct and enforce access isolation. Such an operating
system could potentially consolidate safety and security critical
software on a single device where previously multiple devices
were used. One of the barriers to consolidation on commodity
hardware is the lack of hardware dependability features. A
hardware fault triggered by cosmic rays, alpha particle strikes,
etc. potentially invalidates the strong mathematical guarantees.

This paper discusses improving the trustworthiness of com-
modity hardware to enable a verified microkernel to be used
in some situations previously needing separate computers. We
explore leveraging multicore processors to provide redundancy,
and report the results of our initial performance investigation.
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I. INTRODUCTION

High security computer systems that aim to preserve
integrity or confidentiality of data still use simple, yet
cumbersome techniques, such as an air gap to provide strong
guarantees of isolation between components of a computer
system [1]. This might be isolation of classified information
from networks or components of lower clearance, isolation
of red plain-text data from black encrypted data, or isolation
of faults from critical infrastructure.

Cloud computing provides many opportunities for more
flexible and cost effective computing, however it is difficult
to reconcile the cloud’s consolidation of computing with the
high security community’s conservative approach to strong
isolation. Approaches such as multiple independent level of
security (MILS) set a precedent in architecting the consol-
idation of previously disparate systems [2]. However, there
is a lack of trust in software systems to preserve isolation
in MILS-like architectures, either due to the potential for
bugs in the implementation of a sound design, or due to
potential faults in a design itself due to the complexity of the
system. The presence of side-channel attacks further reduces
the confidence in cloud infrastructure to enforce isolation
[3].

Recent advances in verification and microkernel design
have progressed to the point of providing mathematical
guarantees of functional correctness of the seL4 microkernel
[4]. Further research has extended that work to guarantee
the integrity of isolated subsystems built upon the seL4
microkernel [5]. Formal assurance of confidentiality (and

the practical strength or otherwise of various formulations
of confidentiality) is an active area of research. However,
we are approaching the point in time where lack of trust
in software to preserve acceptable isolation will no longer
be the main issue limiting the adoption of MILS-style
approaches to security and safety.

For MILS-style systems to succeed with a verified kernel,
the assumptions made in establishing the above formal
guarantees will need sufficient guarantees that fit the risk
profile of the application domain. Some assumptions, like
compiler correctness, can be addressed by providing strong
mathematical guarantees [6], which is another area of on-
going research. Assumptions, such as hardware correctness,
are more difficult to address as even correctly designed and
manufactured hardware can experience errors due to cosmic
radiation [7], [8].

Our work aims to explore how to increase the trust-
worthiness of commercial off-the-shelf (COTS) hardware
in order to deploy a verified microkernel in application
domains which require both high security (or safety) and
hardware consolidation. The main focus of this paper is to
describe and motivate the problem area, and then examine
the performance implications at the microkernel level of us-
ing redundancy to improve the trustworthiness of hardware.

II. BACKGROUND AND PROBLEM

Verification of software involves showing that a represen-
tation of the software (ideally the machine code itself) ad-
heres to an abstract specification of the software’s behaviour.
The lowest-level representation of the program defines the
assumed behaviour of the machine. If actual hardware
behaviour deviates from assumed machine behaviour, any
proven properties of software potentially no longer hold.

Fortunately, there is a large body of work in the area of
hardware verification. Hardware verification aims to ensure
that the processor logic design adheres to the specification
of the machine code. Verification involves formal methods
combined with traditional simulation [9]–[11]. Post-silicon
validation tests aim to ensure the actual products adhere
to the machine specifications. For our work, we assume
a correct (or at least known) initial hardware design and
implementation that forms the foundation of the verified
software stack.



However, correctly designed and implemented hardware
is not guaranteed to behave correctly indefinitely. Factors
including high temperatures, circuit aging, and radiation may
still trigger permanent or transient hardware faults [12], [13].
One recent serious service outage of the Amazon S3 system
was caused by a singe-bit corruption in several messages
[14]. A study of hardware failure rates of one million
consumer PCs showed significant failure rates [15].

The flow-on effect of hardware failures on software ob-
viously varies form benign to catastrophic. A recent study
showed 1-2% of activated errors injected into the wu-ftpd
and sshd resulted in permanent vulnerabilities being opened
[16]. A study of security violations introduced by transient
errors in the firewall subsystem of the Linux kernel result in
2% of injected errors causing vulnerabilities, with some vul-
nerabilities requiring rebooting the system to remove [17].
The Java virtual machine bytecode verifier was successfuly
attacked via memory soft errors induced with a 50-watt light
bulb [18].

There are many approaches aiming to mitigate these
hardware faults. We survey various hardware and software
approaches later in section V. For now, we make the
following assertions.

• Hardware approaches using a combination of redun-
dancy, extensive self-checking circuitry, hardware iso-
lation, or radiation hardening are unlikely to become
ubiquitous in COTS hardware in the near future. Such
approaches are also at a disadvantage when power
consumption is an issue and high-dependability is not,
such as in consumer embedded devices.

• Software approaches that replicate computation, at ei-
ther instruction, process, or virtual machine granularity,
assume the correctness of the underlying operating
system or virtual machine monitor.

Thus in a general sense, the problem we aim to solve is
how to leverage ubiquitous multi-core processors to mitigate
hardware faults for a verified operating system, while min-
imizing the performance impact. More specifically, we aim
to:

• maximize the sphere of replication of the trusted soft-
ware stack, including the operating system kernel itself,

• minimize the performance impact of replication and
synchronization of replicas,

• and retain the formal guarantees of the existing formal
verification within the replicas.

Of the three points above, this paper is mostly concerned
with the second point.

III. SAMPLE SCENARIO

To facilitate further discussion, Figure 1 shows a sample
security architecture where two virtual machines of differing
security classifications are co-located on a single machine
running the seL4 microkernel. The goal of the architecture is

to isolate one security classification from another, i.e. ensure
the untrusted Linux virtual machines (VMs) are isolated
from each other, while at the same time, minimizing the
amount of code trusted to perform correctly. The VMs
communicate with the outside world via a cryptographic
(de-)multiplexer (e.g. a VPN termination endpoint) that
ensures all information is encrypted when passing out of a
VM, and decrypted when passing into a VM, thus allowing
different classification VMs to share a network connection.
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Figure 1. Server consolidation architecture

The seL4 microkernel is responsible for managing the
hardware-provided isolation mechanisms to establish the
security domains (the 4 upper boxes in the diagram), and
to establish only the communication channels indicated by
the arrows between those boxes. On seL4, device drivers
run at user-level, encapsulated within a security domain just
like a VM or traditional process. Where available, seL4 will
manage an I/O MMU (such as Intel VT-d) to limit DMA
access to within the security domain. Interrupts are delivered
via inter-process communication (IPC). Thus device drivers
have the potential to be untrusted when appropriate hardware
is available.

Examining our scenario, given the goal of confining con-
fidentiality of information within the virtual machines, irre-
spective of their behaviour. We observe that if in preserving
confidentiality, we are willing to tolerate denial of service,
then the only trusted components in the architecture are
the hardware, the seL4 microkernel, and the cryptographic
(de-)multiplexer. The driver and two VMs cannot violate the
confinement of confidential information unless either:

• the cryptographic component leaks plain text data,
• seL4 fails to enforce the isolation boundaries indicated,
• or the hardware fails to behave correctly.
The seL4 microkernel has been formally verified to be-



have correctly, including being able to control information
flow (time-based covert channels are still an open area of
research). Similar techniques can be applied to the cryp-
tographic component. Thus the security of the architecture
hinges on the correct behaviour of the hardware as we
previously introduced.

We now re-examine two of our three aims from section II
in the context of our example.

• The maximal sphere of replication is obviously limited
by the availability of replicated hardware. Single de-
vices will be a single point of failure. However, multi-
core hardware is ubiquitous, which enables the sphere
of replication to ideally encompass all trusted software
that enforces the security property, if not the entire
software stack. The challenge will be minimising the
exposure to single point of failure at the single device
boundary, in this case the network driver.
The security property of interest in this case does not
rely on trusting the network driver, thus at least for
this example, the single point of failure exposes us to
denial of service, not violation of our security property
(under the assumption that hardware isolation holds in
the presence of driver faults). The situation is not as
straightforward if the driver needs to be trusted, and
thus exposing the trusted software to a single point of
failure.

• The performance of microkernel-based systems is crit-
ically dependent on the performance of the IPC prim-
itives used to communicate between software compo-
nents [19]. IPC performance of a microkernel is anal-
ogous to the system call performance of a traditional
operating system. Any replication needs to ensure IPC
performance is not adversely affected.

IV. INITIAL EXPERIMENTS

We now present our initial experiments where we evaluate
the effect of redundant execution on IPC performance. We
evaluate both dual modular redundancy and triple modular
redundancy scenarios on modern multi-core processors us-
ing a modified version of seL4. Specifically, we perform our
experiments on an ARM Cortex-A9 dual-core processor (a
Texas Instuments OMAP4 4460 running at 1.2GHz) on the
Pandaboard ES REV B1, with 1GB memory; and an x86-
64 quad-core Core i7 870 CPU running at 2.93 GHz with
4GB memory. The hyper-threading and speedstep functions
of Core i7 processor are disabled.

We simplify the general problem for this paper by only
running IPC microbenchmarks as the application. There are
no device drivers nor interrupts. Thus the sphere of repli-
cation under evaluation is CPU core, cache, and memory at
the hardware level; and seL4 itself and the microbenchmark
application.

Our prototype divides the multi-core processors and mem-
ory into distinct nodes that execute independently. The seL4

kernel and applications are replicated across the nodes such
that each node is a redundantly executing copy of the
kernel and application. The modifications to seL4 required to
achieve this, including starting in a consistent initial state,
and replicating user-level processes, are achieved for now
through manual modification of the source code for each
replica. We leave the issue of how to systematically create
these replicas while preserving the formal verification as
future work.

We chose the user-kernel system call boundary as the
granularity of comparing execution of the replicas. Each sys-
tem call must begin with the same inputs from an application
and produce the same outputs, i.e. seL4 and applications
must behave the same from an application perspective in
all replicas. In order to achieve this, the replica nodes must
be deterministic in their execution, and not diverge due to
variations in relative progress, or scheduling order. Thus any
divergence between replicas must be due to an inconsistent
behaviour of the hardware across replicas, and thus a fault
occurrence. We acknowledge that cross-checking replicas
at the system call boundary is insufficient to guarantee the
kernel enforces isolation between security domains. We plan
to explore a more systematic checking of kernel state related
to enforcing isolation in the future. However, our choice
of the system call boundary allows us to evaluate what we
expect to be the biggest perturbation of IPC performance.

Listing 1 shows a pseudo-code outline of changes to
the seL4 system call path to support redundant execution
and cross-checking of system call inputs and outputs. The
changes save a copy of inputs used by a system call in a
region shared between processors, performs the system call,
and then copies the system call outputs to the shared area,
then waits on a barrier prior to comparing results with a
second processor. If the results are consistent, the processor
waits for the other processor(s) to complete their check. If
a comparison fails, the system is halted.

To evaluate the effect of our change on IPC performance,
we measure inter-address space one-way IPC costs for the
most commonly used variant of seL4 IPC (a call) as our
micro-benchmark. Our micro-benchmark uses the CPU cycle
counter to time-stamp immediately prior to when a process
is calling another process, and also when the other process
actually receives the IPC. We benchmark two variations.
The first benchmark is sending a zero-length message which
represents the best-case overhead of IPC with no copying
overhead. For cross-checking, a zero-length message still has
system call inputs and outputs that describe the message sent
and received, which are the inputs and outputs checked via
replicas. The call is repeated 50 times and the best-case num-
ber is reported, so as to estimate the hot-cache performance,
and thus the lowest overhead – in practice the overhead will
be higher. The second benchmark is the same as the first,
except the message size is the maximum size supported by
the fastpath optimization, which is a carefully crafted code



path aimed at delivering short messages efficiently. In the
case of ARM, the messages size is 4 words, for x86-64, 10
words. The results are shown in Table I.

Listing 1. Checking Pseudo Code
/* enter the kernel by a system call */
save_input_to_shared_area ();

/* call normal kernel path */
handle_system_call ();

/* about to leave the kernel */
save_output_to_shared ();
/*
* count is an array can be
* accessed by all nodes , it is indexed
* by the node id.
*/

count[my_node_id ]++;
paired_node_id = (my_node_id + 1) %

total_node_number;
/* wait until all counters are equal */
count_barrier ();

/* comparing the content with the next
adjacent node */

correct =
do_content_checking(paired_node_id);

if (! correct) halt_the_node ();

/*
* increase the counter again and sync
* again to make sure the checking on all
* nodes finished successfully
*/

count[my_node_id ]++;
count_barrier ();

/* now the inputs and outputs are
consistent */

return_from_syscall ();

Table I
INTER-AS IPC Call BENCHMARK (CYCLES)

Benchmark Baseline (single core) DMR TMR
ARM (0 words) 280 738 N/A
ARM (4 words) 302 1095 N/A
x86-64 (0 words) 784 1336 1560
x86-64 (10 words) 860 1780 2052
DMR: Dual Modular Redundancy TMR: Triple Modular Redundancy

We see that the simple approach to comparing the inputs
and the outputs results in a significant overhead being added
to IPC. This is attributable to the extra copying of the inputs
and outputs to the shared area visible to the other processors,
then comparison itself, which results in cache-line transfers
between cores, and lastly, the cache-line transfers required
when passing the barrier. The overhead obviously increases
with size of the inputs and outputs. We expected this
overhead to translate into reduced performance at the macro-
level, and are actively exploring potential optimisations,

in addition to constructing larger systems to quantify the
performance reduction.

V. RELATED WORK

A. Hardware

Hardware-based solutions to tolerating intermittent and
transient faults have a long history in safety critical comput-
ing, such as in aircraft [20], [21]. Using redundant CPUs,
memory, buses, and I/O, faults can be detected with dual
modular redundancy (DMR), or masked with triple modular
redundancy (TMR). Characteristics of solutions in the space
are self-checking or redundant vote verification of outputs
and configurable isolation of failed components.

High-availability server hardware also uses DMR and
TMR in locked-step configurations, where individual micro-
processors are synchronised to the same clock and inputs,
and the processor outputs are compared to detect or mask
faults. More recently, HP NonStop Advance Architecture
(NSAA) loosely couples chip multiprocessors to achieve
DMR or TMR [22]. Instead of lock-stepping, NSAA de-
terministically executes the same instruction streams at
slightly differing rates, and synchronises and compares I/O
operations to redundant devices over redundant system-level
communication fabrics. The loose coupling is required as
lock-stepping is not possible in the presence of modern
processor features such a clock-scaling for power manage-
ment. The loose coupling also enables one CPU to execute
recovery code in the case of a faults, or TLB miss code,
and still eventually produce the same I/O output as non-
faulting code. They rely on hardware implementing fail-fast,
and not continuing erroneous execution, nor propagating
faults across CPUs. Fail-fast is not guaranteed in the case
of commodity CPUs.

Researchers have also observed that commodity chip
multiprocessors lack strong fault isolation between cores on
the chip, and have proposed configurable isolation between
cores [23]. They show graceful degradation over time by
simulating reconfiguration in the presence of component
failures. This approach provides stronger guarantees against
fault propagation, but still relies on “external” result com-
parison in the I/O subsystem or other external checker not
present in commodity platforms to achieve fault masking.
Configurable isolation is complementary to our approach,
but configuration would require a consensus across more
than a single core to strengthen isolation in the presence of
an erroneously executing core.

B. Software

Most of the software based solutions focus on application-
level fault tolerance or service availability. Compiler-based
techniques, such as SWIFT [24] generates binary code with
redundant computation and compares the results to detect
erroneous computation. This approach does not take the ad-
vantage of multi-core processors as the duplicated code runs



on single core only. The comparisons are not self-checked
and the approach assumes writes to memory are error-free.
Wang et al. [25] introduced compiler-managed redundant
multi-threading to utilise the multi-core processors for more
efficient transient fault detection. The management layer
used to create and schedule the leading/following threads is
not protected. PLR (Process-Level Redundancy) [26] applies
a sphere of replication to application level, the applications
and libraries are replicated to leverage multi-core processors
for transient fault tolerance. The PLR management layer and
the operating system are assumed correct. EVE (Execute-
Verify) [27] applies state machine replication to improve the
dependability of the services provided by multi-core servers.
Hardware transient faults in the services are detected during
the verify stage. Romain [28] is an operating system service
which provides transparent redundant multi-threading to
tolerate transient faults. The replicated applications states
are compared before the states are externalised. The authors
note that the Romain service and the kernel are assumed to
be reliable and should be protected by other measures [29].

Bressoud et al. implemented a hypervisor-based fault-
tolerant system [30] on the HP PA-RISC processors. Proto-
cols were designed to enhance the hypervisor to create and
coordinate the primary VM and backup VM to achieve fault
tolerance. As the virtualisation technologies are becoming
mature, the overhead to create and run virtual machines has
reduced significantly. VMWare designed fault-tolerant fea-
tures for their enterprise product line [31]. The backup VM
keeps its internal state synchronised with the primary VM
by executing all the events sent by the primary VM through
a logging channel. These virtual-machine-based solutions
focus on providing high service availability and fail-over
is used to mitigate a detected failure. If the hardware faults
affect the hypervisor or the hosting operating system, the
faults may not be detected and the result could be service
outage or data corruption.

VI. CONCLUSIONS

We have argued that a formally verified microkernel (such
as seL4) provides the high-level correctness and isolation
guarantees required to build a trustworthy software system.
However, commodity hardware lacks high-dependability
features and thus is susceptible to temperature, radiation,
cosmic rays and other environmental factors. Transient faults
or any other deviation in the assumed hardware behaviour
will potentially invalidate the correctness and security guar-
antees.

In this paper, we have explored leveraging redundant
processors to improve the trustworthiness of COTS hard-
ware. We have implemented dual- and triple-redundant
versions the seL4 microkernel, and identified inter-process
communication as an issue in retaining performance of the
microkernel. We have micro-benchmarked both dual- and

triple-redundant version of the kernel on both ARM and x86-
64 and have observed that there is a significant performance
overhead at the micro-benchmark level.

We plan to explore three general areas in the future:
(1) evaluating performance at the macro-level of a more
significant system, (2) increasing the sphere of replication
to check more than just syscall inputs and outputs, and (3)
integrating device drivers into our system.
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[29] B. Döbel and H. Härtig, “Who watches the watchmen?
protecting operating system reliability mechanisms,” in Pro-
ceedings of the 8th Workshop on Hot Topics in System
Dependability, Hollywood, CA, USA, Oct. 2012.

[30] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault
tolerance,” ACM Transactions on Computer Systems, vol. 14,
pp. 80–107, 1996.

[31] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design
of a practical system for fault-tolerant virtual machines,” ACM
Operating Systems Review, vol. 44, no. 4, pp. 30–39, Dec.
2010.


