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Abstract—Trustworthy isolation is required to consolidate
safety and security critical software systems on a single hardware
platform. Recent advances in formally verifying correctness and
isolation properties of a microkernel should enable mutually
distrusting software to co-exist on the same platform with a
high level of assurance of correct operation. However, commodity
hardware is susceptible to transient faults triggered by cosmic
rays, and alpha particle strikes, and thus may invalidate the
isolation guarantees, or trigger failure in isolated applications.

To increase trustworthiness of commodity hardware, we
apply redundant execution techniques from the dependability
community to a modern microkernel. We leverage the hard-
ware redundancy provided by multicore processors to perform
transient fault detection for applications and for the microkernel
itself. This paper presents the mechanisms and framework for
microkernel-based systems to implement redundant execution for
improved trustworthiness. It evaluates the performance of the
resulting system on x86-64 and ARM platforms.

Keywords—Microkernel, Security, Reliability, SEUs, Trustwor-
thy Systems

I. INTRODUCTION

Security-critical and safety-critical systems require rig-
orous design and implementation approaches to provide a
high degree of assurance that they meet their application
requirements. Conventional wisdom is that even with rigorous
development processes, software bugs are inevitable in large
complex systems, which leads to solutions based on separate or
redundant hardware for information isolation or fault isolation.
An air gap is clearly a trustworthy isolation approach.

It has long been envisioned that trustworthy isolation
implemented in software could be used for security or safety
critical systems. The aim of separation kernels is to isolate
applications by creating “an environment which is indis-
tinguishable from that provided by a physically distributed
system” [1], with applications communicating only through
the channels explicitly provided by the separation kernel. The
multiple independent levels of security (MILS) approach also
uses a separation kernel to consolidate previously disparate
systems onto a single hardware platform [2]. Virtualisation
and virtual machine monitors (VMMSs) can also be viewed
as platforms for consolidating multiple applications (in this
case operating systems) while retaining isolation for security
or reliability concerns [3], [4], [5].

These approaches share the common aim of reducing ex-
posure to operating system (OS) bugs by reducing the amount
of privileged code responsible for the software platform’s
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integrity and isolation. The approaches are at least philo-
sophically aligned with microkernels in regard to espousing
a trustworthy core extended by user-level (i.e. independent
and isolated) services and applications [6]. However, these
approaches also share a common vulnerability — the overall
system security or safety is only as trustworthy as the under-
lying OS, be it a separation kernel or a VMM.

If truly small microkernels are applied as separation kernels
or VMMs, then an opportunity exists to construct trustworthy
systems using software isolation (a virtual air gap). Recent ad-
vances in system software verification and kernel design have
resulted in a microkernel (specifically, the seL.4 microkernel)
being mathematically proven to be bug-free [7], and thus can
be trusted to implement its specified behaviour. Furthermore,
additional proofs provide guarantees of integrity and isolation
of applications [8], [9], [10], with proof properties extending
to the microkernel binary itself, thus removing the compiler
as a source of defects [11].

We expect a general approach to constructing trustworthy
software systems to evolve from the recent system software
verification work. The vision is a software stack consisting
of software components ranging from fully formally verified
components (i.e. trustworthy) to untrusted or malicious compo-
nents, separated by the strong isolation provided by the verified
microkernel, thus forming a trustworthy system. We define
trustworthy as having a high degree of confidence in correct
operation of the trusted components of the system.

However, we believe there are still barriers to adoption of
verified microkernels and components in safety and security
critical situations, as the proofs make the assumption that the
hardware itself behaves as specified in the proof. Any deviation
in behaviour of the hardware invalidates any guarantees derived
from formal verification. The focus of this paper is to obtain
extra assurance of correct system behaviour in the presence of
transient faults in commodity hardware.

Transient faults are not necessarily related to (in)correct
hardware design or manufacture. Transient faults can be trig-
gered by single event upsets (SEUs), that result from alpha
particle strikes or cosmic rays [12], [13], [14]. Transient faults
also occur as commodity hardware ages [15]. Transient faults
can manifest themselves in almost any way as a result of fault
propagation if they occur within the OS kernel itself [16].
Studies have shown that transient faults can introduce security
vulnerabilities in the Linux kernel, network services, and in
virtual machines. The vulnerabilities can continue to exist until
the system is rebooted, leaving the potential for a SEUs to



leave a system vulnerable for long periods of time [17], [18],
[19]. A recent study [20] demonstrated that commodity DRAM
chips are vulnerable to disturbance errors. Malicious programs
may be able to corrupt data in a row by reading nearby rows
repeatedly to create an exploit, as demonstrated by the row
hammer attack [21].

Our work’s goal is to address two issues: (1) the lack of
assurance (or indication) of error free operation of commodity
hardware, and (2) the threat of a transient fault creating
a vulnerability that can be exploited to violate isolation or
circumvent the security or safety policy of the system. Our mo-
tivating use-case is high-assurance embedded systems where
power, weight and cost are issues and the risk profile does
not warrant the expense or inflexibility of bespoke hardware
solutions. Additionally, our initial target is application domains
where reboot is a sufficient recovery mechanism (e.g. a secure
firewall).

Existing redundant execution approaches that address sys-
tem reliability (and thus our two goals) rely on either spe-
cialised hardware or make assumptions about the correct
behaviour of the underlying OS, i.e. the lower-level privileged
software layer is assumed unaffected by SEUs. We elaborate
further in Section II.

We address these two issues by leveraging the redundancy
available in modern multicore processors to create a framework
for co-operative self-checking of replicated execution of a
system that includes the underlying operating system itself.

A. Overview

Our approach takes a single core system and replicates it
to form replicated state machines [22]. Unlike pure replicated
state machines, replicas have non-identical behaviour when
managing non-redundant hardware. We introduce the concept
of a compressed trace inside the kernel of each replica to
capture a subset of the evolution of the state of each replica.
We exclude (and aim to minimise) the non-identical behaviour
of replicas to ensure the compressed trace deterministically
evolves in each replica and thus if the traces are found
inconsistent on comparison, an error has occurred in a replica
and remedial action can be taken (fail-stop in our case).

Non-redundant hardware devices are handled by the in-
troduction of a small number of microkernel API changes
that enable a framework for redundant device drivers of non-
redundant devices to co-ordinate access and hide device non-
determinism from the rest of the system.

We have constructed a prototype system using the sel4
microkernel on both an ARM Cortex A9 and an Intel x86-64
platform. We evaluate the performance impact of the addition
of trace management and redundant execution on several
benchmarks. We also perform fault injection experiments to
demonstrate that our system can detect transient faults in
replicas.

Our contributions are as follows.

e A set of microkernel mechanisms together with a frame-
work for co-operative self-checking using redundant exe-
cution of a uniprocessor system for increased assurance of
correct operation. The framework allows system designers

to trade latency of fault detection against the overhead due
to frequency and coverage of self-checking, to match the
system’s risk profile.

e An approach to supporting redundant device drivers that
manage non-redundant devices.

e A performance evaluation of the approach showing a
modest performance penalty in return for increased as-
surance of correct operation.

e A fault injection evaluation demonstrating our frame-
work’s ability to detect errors resulting from transient
faults, and effectively convert uncontrolled failures into
graceful fail-stops.

II. RELATED WORK
A. Hardware

Tolerating hardware faults by using isolated and redundant
processors, buses, memory modules and I/O peripherals is a
mature approach in safety critical computer systems [23], [24],
[25]. Faults can be detected by dual modular redundancy, or
masked by triple modular redundancy. Redundant results are
voted on to form the final output. Hardware may be radiation-
hardened or feature self-checking or self-correcting circuity to
improve reliability.

Commercial high-availability servers also use DMR (dual-
modular redundancy) or TMR (triple-modular redundancy) in
locked-step or loosely-coupled configurations for improved
availability. The IBM G5 processor has replicated pipelines.
Each instruction is executed independently and the results are
compared before being committed [26], [27]. NEC combines
a special chipset and redundant Intel Xeon processors to
allow the processors to run in locked-step mode, enabling
the detection of errors and initiation of recovery [28]. The
designers of the NonStop Advanced Architecture [29] (NSAA)
recognise that running commodity processors in locked-step is
more challenging because of dynamic core frequency scaling,
the increasing CPU frequency, and the fact that multicore
processors may not expose individual cores through sockets.
The NSAA loosely lock-steps processors to allow redundant
instruction streams execute at different rates. The processors
are connected to self-checking logical synchronisation units
where the processor 1/O outputs are compared for fault detec-
tion and masking.

Our goal differs from these hardware-based approaches in
that we target commodity multicore processor platforms which
feature very few hardware-based fault tolerance approaches
(e.g. no ECC memory and non-redundant devices). Our ap-
proach relies only on the availability of multiple cores, but can
theoretically take advantage of hardware-based fault detection
or correction if available.

B. Software

Prior to discussing software approaches to improving
reliability in the presence of transient faults, we first re-
introduce the concept of the sphere of replication (SoR) [30].
Computation within the SoR forms a finite state machine
with transient fault detection due to redundant execution.
Computation outside the SoR does not possess fault detection
and must either rely on fault propagation to the SoR, or be



covered by other techniques, or become an area of vulnerability
to transient faults.

Software-based approaches to redundant execution can be
broadly classed into compiler-based, OS or runtime-based, and
hypervisor-based approaches. We examine exemplars of each
class in terms of their SoR and relate them to our goal of
including the OS-itself within the SoR.

The SWIFT project modifies the compiler to insert re-
dundant computation together with result and control flow
checking [31]. SWIFT avoids replicating memory by assuming
fault-free (e.g. ECC) memory and caches. Framing SWIFT in
terms of a SoR, general computation is within the SoR, the
checking code and memory are not. Thus SWIFT’s surface
of vulnerability includes writes to memory in addition to the
checking code itself. No mention of OS-level SoR issues are
discussed.

SWIFT was evaluated on an Itanium 2 which has 128
registers for compiler use. The performance penalty will be
higher on more register-constrained architectures [32]. Our
goal is to support commodity hardware which does not neces-
sarily feature ECC memory, and thus we cannot simply assume
memory can be omitted from the SoR.

The ubiquity of multicore processors provides an oppor-
tunity to utilise redundant computation across multiple cores
for improved reliability. A compiler and runtime approach
is to modify the compiler to create redundant threads that
replicate computation within the SoR, one leading thread and
one trailing [32]. The SoR excludes shared memory, system
calls, and the OS itself.

Process-level redundancy [33] also exploits multicore pro-
cessors by instantiating multiple instances of an application on
different cores, i.e., the SoR is the process itself. Input repli-
cation and output comparisons are all conducted at the system
call level. The approach does not support non-deterministic
events and assumes correct OS operation.

Romain is an operating system service on a microkernel
that also replicates program execution [34]. A master pro-
cess initialises environments and creates process replicas. The
master also handles CPU exceptions triggered by replicas,
and the exception handling code compares the states of the
replicas. Romain is broadly similar to our approach except that
the microkernel itself, the user-level device drivers, and the
Romain service lie outside of the SoR and are assumed to be
protected by other measures, such as a hardened processor in a
heterogeneous multicore system. We make no such assumption
and include our kernel in the SoR.

Reliable virtual machine hosting has obvious parallels with
reliable application hosting with the hypervisor creating redun-
dant guest OSs to improve reliability. One approach is to record
non-deterministic events injected into a primary guest and
replay the same events to a backup guest on the same host or a
backup host [35], [36]. These record-replay approaches focus
on availability (i.e. fail-over), not error detection, and thus in
the presence of transient faults, the primary can propagate
erroneous results, or the primary and backup may diverge
undetected. The hypervisors themselves are also outside the
SoR.

Small hypervisors, such as SecVisor, can guarantee the
integrity of the guest operating system [37]. SecVisor’s goal is
to defend against guest OS exploitation via OS modification,
not detect hardware transient faults. It does not feature a
SoR for the guest OS or itself. TinyChecker aims to improve
reliability in the face of software faults via failure detection
using a small hypervisor [38] as the foundation of nested
virtualisation. The authors do not consider hardware faults,
nor does the SoR include the TinyChecker itself.

To summarise, existing approaches either require spe-
cialised hardware or exclude the lowest-level OS from the SoR.
Our aim is to include the lowest-level OS and device drivers
within the SoR on commodity hardware in order to improve
the trustworthiness of the underlying microkernel.

III. SEL4 BACKGROUND

We now outline selL4’s most relevant characteristics. sel.4
has been described in detail previously [39], with detailed
documentation also available [40].

The seL.4 microkernel is a uniprocessor event-based kernel,
i.e., the microkernel is not preemptable except for a few
strategically placed preemption points where pending inter-
rupts are polled. The lack of concurrency support stems from
the challenges in verification of concurrent software. The gain
from this restriction is that seL.4 has been formally verified
to be correct, i.e. bug free [41]. Interrupt latency of such a
design can be kept within tight bounds with careful design
[42]. Low-level interrupt handling is either triggered by an
exception while at user-level, or by an observation of a pending
interrupt at fixed points within the microkernel.

User-level applications are supported via microkernel prim-
itives to create address spaces, direct the mapping of physical
frames, create threads and assign them to address spaces,
thus forming a process-like abstraction under the direction of
a user-level OS personality. Processes form system services
and their client applications, which interact via interprocess
communication (IPC).

Authority is conveyed to applications via in-kernel (i.e
segregated) capabilities. A selL4-based system starts with a
single root task which possesses all the authority in the system.
The root task initialises the remainder of the system according
to the application domain, and may become the OS personality
for the system itself.

The seL4 microkernel (and L4-kernels in general) feature
user-level device drivers. Drivers are just applications provid-
ing a device service via IPC to other higher-level services (e.g.
a TCP/IP stack), or drivers maybe directly incorporated into
a user-level system service. Drivers access hardware devices
either via memory-mapped I/O or via access to legacy port-
based I/O (via system calls in sel.4’s case). Drivers receive
interrupts via an IPC-based notification mechanism similar to a
binary semaphore. The precise details are not important for our
discussion except the observation that device driver interrupt
handlers only receive notification of a pending interrupt when
an interrupt handler waits for a notification, i.e. at a fixed point
in their execution.

The microkernel does not have an API to access time.
Systems can use timer device drivers as part of their OS



personalities to provide an API to access time related services.

IV. APPROACH

In this section we discuss our approach in detail. We divide
the discussion into system replication, the compressed trace,
kernel state consistency, and device drivers. The microkernel
changes required to support our approach are highlighted in
each section. We also highlight important properties of the
microkernel relied on for our approach.

A. Replication

The initialisation of L4-based systems (seL4 included)
consists of loading a boot image containing the microkernel
and an initial user-level root task that is responsible for starting
the remainder of the system from executables and data also
contained within the image. The in-kernel initialisation only
consists of initialising the microkernel itself, creating the root
task, and giving the root task access to the in-memory boot
image. The majority of the system is started by the root task. A
system can vary from a complete set of applications and user-
level drivers loaded from the image, or it may be a minimal
set of drivers and applications that effectively chain-loads a
more complex system from a disk or a network.

To initialise a replicated system as illustrated in Figure 1,
the seL.4 in-kernel initialisation executes the following steps
(our discussion assumes DMR for clarity).

e Physical memory is partitioned according to the number
of replicas desired, but is limited by the number of
available cores.

e The kernel code and boot image are copied into each
partition.

e The remaining cores are brought online.

e All cores synchronise on a barrier! prior to the first kernel
exit.

The replicated root task then creates identical replicated
systems (replicated state machines) on each core. The root
task starts in the same initial state on each core, and the root
task’s initialisation steps are deterministic.

Microkernel Change: Microkernel, root task, and boot
image replicated on each core partition.

The root task determinism follows from a property of the
seL4 API. The API does not directly expose physical addresses
to applications. While the microkernel itself sees the different
physical addresses of each partition, its behaviour is not a
function of the specific addresses themselves. Applications
manipulate the system through capabilities to kernel objects,
which provide a level of indirection between identifiers in
the API and actual physical addresses. Where addresses are
required in the API, they are specified as offsets within a
capability-specified memory region.

The lone exception to this restriction is that all root tasks
receive a map of the physical memory available in the first
partition as part of their initial state. See Section IV-D4 for

'We use barrier to denote a synchronisation primitive where all cores
involved wait until they all reach the same execution point prior to progressing.
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a discuss of physical addresses and DMA-based user-level
drivers.

Microkernel Property: Microkernel API does not
expose physical addresses to applications.

B. Compressed Trace

The most significant microkernel change is the addition of
a per-replica (per-core) compressed trace that captures events
on each core. We define an event very generally as a value at
an instance in the trace. By instrumenting the microkernel, the
sequence of events captures a subset of the evolution of the
microkernel’s state.

Each replica’s trace consists of a count and a value. The
count tracks the number of events observed by the replica,
and the value is a running checksum of the values associated
with each event. We use Fletcher’s checksum for the running
checksum as it is dependent on both the values and the order
they are observed [43].

The compressed trace is managed via the following
microkernel-internal API.

e add_event(value) adds an event to the local per-core
trace. It is an entirely local to the core operation requiring
no cross-core synchronisation.

e add_compare_event (value) adds an event to the local
trace and waits until all cores reach the same point
in the trace and then compares the current state. A
mismatch implies the replicas are inconsistent due to a
fault, and our prototype triggers a graceful fail-stop. Our
implementation requires two barriers to coordinate the
comparison.
add_event (value) and add_compare_event (value)
are interchangeable with the former being a fast local
operation and the latter forcing an immediate trace com-
parison. This creates a trade-off between performance and
frequency of trace comparison for system designers to
resolve as required. See Section IV-D for our prototype’s
primary use case in the context of device drivers.

e trigger_action(action) flags a pending action for all
replicas to handle. Actions are asynchronous activities that
can not be delivered at precisely the same instant across



all replicas. For instance, device interrupts are directed to
core 0, and are propagated via inter-processor interrupts
(IPIs). By flagging an action as pending for each replica,
all replicas can perform the action at a consistent point
in the trace. This primitive does not directly contribute to
the trace, only indirectly via handle_action().

e handle_action() performs the pending action when the

following pre-conditions hold: (1) all replicas are within
handle_action(); (2) all replicas are at the same point
in the trace; and (3) all replicas have observed the action
is pending. If the pre-conditions do not hold, the leading
replica waits until the trailing replicas reach the same
point in the trace, upon which the pre-conditions can be
satisfied and the action performed.
The implementation is more complex than alluded to, as
a naive implementation can deadlock due to the timing of
visibility of flags to replicas, resulting in some replicas
waiting on a barrier in add_compare_event (), and
others waiting in handle_action() . We avoid the issue
with the aid of a conditional barrier in handle_event ()
that can be aborted by the barriers in the other primitives
to allow replicas to synchronise traces.

The software barrier implementation features a timeout. If
replicas diverge in their control flow because of a transient
fault, replicas may wait forever in a barrier. The timeout
value needs to exceed the maximum execution time a replica
may validly trail the leading replica to avoid triggering false
positives. We choose a conservative timeout of 2 seconds,
which upon expiration, the system is assumed to have become
inconsistent and a graceful fail-stop is triggered.

Microkernel Change: A compressed trace of events
is added to the microkernel.

C. In-kernel Trace Contributions

In this section we describe the relationship between the
microkernel and the compressed trace.

1) Non-determinism: The primitives that manage the
trace assume they are invoked deterministically with the
same result across all replicas, with the exception being
trigger_action(). Thus care must be taken to prevent
non-determinism that is visible in a small fraction of the
microkernel from contributing to the trace and causing it to
diverge.

Non-determinism is visible directly and indirectly as a
result of hardware triggered interrupts. Noting that interrupts
are disabled within the microkernel itself, the non-determinism
is visible directly due to hardware interrupts being delivered
differently to individual cores (core 0 receives the interrupt
and propagates it to the others via the trigger_action()
primitive and IPIs), and indirectly as variation of the contents
of the saved user-level register sets, which are dependent on
the timing of interrupt delivery.

Interrupts to each replica are observed consistently in the
trace analogous to consistent input event ordering in state
machine replication. The lowest-level in-kernel interrupt han-
dler simply records that an interrupt occurred in shared state,
and IPT’s the other replicas. We guarantee handle_action()
(which does the majority of the in-kernel interrupt handling)

is invoked between the same surrounding trace events across
all replicas, but the exact point between the two events is
imprecise. This implies that saved user-level registers cannot
contribute to the trace as they are not consistent on kernel
entry. If user-level state suffers an SEU on saving or restoring,
we rely on fault propagation to observe the failure, not direct
comparison of the state.

Microkernel Change: Lowest-level interrupt handling
and interrupt-triggered user-level state observation do
not contribute to the trace.

2) Coverage: Replicas in our approach have fault detection
coverage without invasive instrumentation, as if all of the
outputs of the replicated systems to devices are consistent, then
a transient fault is benign. However, one or more replicas may
still be vulnerable to compromise without visibly diverging.
Once a single replica microkernel is compromised, all replicas
can be subverted as isolation between replicas is software
controlled.

In seeking extra assurance of isolation, we chose the
following kernel state updates to incorporate into the trace in
addition to context switches and device outputs, to balance
the trade-off between the overhead of instrumentation of all
kernel state changes, and the high-latency of detection of no
microkernel-derived contributions to the trace.

Pagetable content affects the isolation between replicas, be-
tween user-level and the kernel, and between trusted and
untrusted application within a replica.

Capability node content affects the distribution of authority
and thus the isolation boundaries enforced by the micro-
kernel.

Our implementation uses add_event () to include these
updates in the trace. Recall add_event() is a local oper-
ation that does not compare the traces. Instead, we rely on
handle_action(), which is called prior to every kernel exit,
to compare the traces for mismatch when the call results in an
action being taken. Effectively, we compare traces at least on
every context switch and device interrupt.

In addition, we wanted to explore the performance penalty
of a higher frequency-of-comparison variant of our system. We
created variant which instruments every system call to con-
tribute a summary to the trace with add_compare_event ()
instead of add_event (), thus incurring the expense of in-
creased synchronisation overhead on every system call.

In general, one can reduce the latency of trace divergence
detection with judicious use of add_compare_event() in-
stead of add_event () at the expense of increased synchroni-
sation overhead.

Microkernel Change: Microkernel instrumented to
include safety or security critical kernel state changes
in the trace.

Microkernel Change: Microkernel augmented with
handle_action() on kernel exit to consistently in-
voke asynchronous actions.




D. Device Drivers

As described earlier, device drivers on selL4 run at user-
level. Hardware devices expose replica drivers to inconsistent
input as either access is exclusive to a single replica (as
we do not assume replicated hardware), or they can produce
inconsistent behaviour for each replica (e.g., access to timer
counters). The following sections describe how we deal with
each aspect of device drivers so they provide consistent input
to all replicas.

1) Port-based I/0: Port-based I/O on x86-64 processors
involves the use of port-specific instructions (e.g. inb and
outb) that can be invoked within kernel mode, or at user-
level with appropriate hardware permissions enabled. The seL4
microkernel restricts access to port instructions to kernel mode
and provides an API for drivers to invoke to access the
hardware.

To ensure port-based I/O is be consistent across replicas,
we make available the core’s number (ID) in-kernel within
a replica and use the following design pattern to access
hardware registers, where PRIMARY is indicative of the core
with exclusive access.

if (core == PRIMARY) {
shared_variable = hardware_register;
}
barrier();
result = shared_variable;
barrier();

Microkernel Change: Core ID available within micro-
kernel.

Microkernel Change: Hardware access coordinated
for consistent results.

2) Memory-mapped 1/0: Memory-mapped 1/O differs from
port-based I/O in that normal read and write instructions are
used at user-level to access the hardware directly from within
an application. We apply the same design pattern as applied
for port-based access, except we do so from user-level. This
implies that drivers must be modified to apply the pattern
appropriately to observe consistent I/O (or time stamp counter
access) across replicas.

To apply the pattern at user-level, a driver needs knowledge
of the core ID. As part of the boot process, we make the core
ID available to the root task in its initial state. The root task
can then selectively propagate the ID to drivers in order to
distinguish between replicas and coordinate hardware access.
The root task and drivers are trusted to not to cause divergence
based on this differing initial state in each replica.

Shared memory is also required to implement the barrier
and distribute the I/O read results between replicas, and as
such, we also augment the virtual memory mapping system
call to dictate if a mapping should be private to the replica,
i.e. within the replica’s partition (the normal case), or shared
between replicas at the corresponding partition offset within
the primary partition, independent of the replica performing
the mapping operation. Note that shared memory regions are
between the same application (i.e. security domain) running on

each replica, and that context switches are coordinated across
replicas ensuring that when shared memory is accessible, all
replicas are running within the same security domain.

Microkernel Change: Core ID made available in the
initial state of a replica.

Microkernel Change: Virtual memory mapping prim-
itives augmented to support limited memory shared
across replicas.

3) Interrupt Driven I/O: Eventual interrupt delivery to
drivers on selL4 is via IPC and thus interrupts are only
observed by drivers when invoking an IPC receive primitive.
The previously introduced handle_action() primitive within
the microkernel ensures that interrupt visibility is consistently
observed across all replicas. Thus interrupts are visible consis-
tently across all drivers at the same point in execution without
further kernel changes.

Microkernel Property: Interrupts are delivered con-
sistently via IPC.

4) DMA: DMA-based devices create two issues. Firstly, in-
memory descriptors used to communicate between the driver
and the hardware device need to be observed consistently
across all replicas and generally only written once. Secondly,
buffers used for bulk transfer (e.g. Ethernet packets) should
also be consistent, but ideally the amount of extra copying
should be minimised.

We deal with descriptors in a similar manner to memory-
mapped device registers using knowledge of the core ID and
user-level barriers (implemented in the shared memory) to
coordinate access and observations.

Input buffers (i.e. data from devices) are located in memory
shared between replicas, thus avoiding copying to private
buffers in each replica. Only existing copying is required (e.g.
to a socket buffer within the IP stack). The physical addresses
associated with the buffers are derived from the root task’s
initial state, and thus are consistent across all replicas and refer
to physical addresses in the primary partition.

If a replica’s observations of input buffers diverges due to
transient faults, it will eventually result in trace divergence, or
is benign. However, output buffers have no indirect checking.
We improve the assurance of correctness of output buffers by
using private buffers per replica which can be check-summed at
user-level and compared for consistency via a system call that
invokes add_compare_event () with the value of the sum.
Thus output is generated per replica, compared, but then DMA-
ed only from the PRIMARY replica.

Input buffers could theoretically also be checksummed
and compared for extra assurance at the expense of some
performance compared our prototype’s reliance on eventual
fault propagation. The advantage of providing a system call for
contributing user-level state to the trace is that this trade-off
between assurance and performance can be left to the specific
system designer.



Microkernel Change: A system call added to con-
tribute user-level state to the trace.

Note that software with access to this call could artificially
trigger a fault if able to observe non-determinism (e.g., via
preemption), and thus this call should be restricted to only
drivers, but is not in our current prototype.

5) User-level: In order to ensure the determinism required
to execute replicas consistently across multiple cores, we
require user-level to be either race-free or to hide any non-
determinism (e.g., using techniques we described previously
for device drivers). The requirement enables us to support im-
precise preemption of user-level without triggering divergence
of execution.

The race-freedom requirement divides the system into two
classes of application: applications that are trusted to avoid
causing divergence, and thus have access to the full micro-
kernel API; and untrusted (potentially malicious) applications
that must only be given access to a restricted environment
not exposed to non-determinism. The selL4 capability model
is sufficient to enforce such a restricted environment which
consists of no shared memory, only a single thread of execu-
tion, together with no rights to create shared memory (inter-
or intra-partition) or more threads.

In theory, we could remove this restriction from user-level
by consistently context switching at the same point in the
user-level instruction stream across all replicas. This might be
achieved by using performance counter triggered exceptions
together with hardware-triggered breakpoints [44]. However,
it is not straight forward due to the differing execution of the
primary device managing replica and other replicas. We hope
to explore the feasibility of consistent context switching in
future work.

V. EVALUATION

We evaluate our framework from several perspectives.
Firstly, we quantify the reduction in performance due to
replicated computation for the two extremes of a CPU-bound
benchmark and a memory-bound benchmark. These two mi-
crobenchmarks also serve to highlight the difference between
the ARM and x86-64 platforms under test. Secondly, we
measure the added interrupt latency of our approach. Thirdly,
we measure the performance of Redis (a key-value store) using
the Yahoo Cloud Serving Benchmark (YCSB), a real-world,
I/O intensive application and benchmark. Lastly, we perform
fault injection experiments to confirm our framework’s ability
to detect transient faults.

The configurations used in the evaluation are:

Base An unmodified (unprotected) system.

DMR A dual modular redundant variant of the system that
does not include system call arguments in the trace, and
compares traces on every device interrupt.

DMRS A dual modular redundant variant of the system as
above with the addition of system call arguments in the
trace, and trace comparison on every system call.

TMR A triple modular redundant variant of the system that
does not include system call arguments in the trace, and
compares traces on every device interrupt. Note: our TMR

variant only supports error detection, not fault masking.
We are exploring fault masking as future work.

TMRS A triple modular redundant variant of the system as
above with the addition of system call arguments in the
trace, and trace comparison on every system call.

We include the system call checking variant as an example
of the trade-off of increasing the direct coverage and frequency
of trace comparison at the expense of performance.

A. Platforms

Our evaluation is on two different platforms, an Intel
x86-64 platform (a Dell Optiplex 990) and an ARM Cortex A9
platform (a Freescale SABRE Lite featuring an i.MX6 system
on a chip). Further details are shown in Table I. For the x86-64
we disable Hyperthreading and Turboboost to ensure consistent
performance for each benchmark run.

TABLE 1. HARDWARE PLATFORMS
x86-64 ARM
CPU Core 17 2600 Cortex A9 iMX6
Quad-core@3.40 GHz Quad-core@1 GHz
Cache L1 32 KiB D/I per core L1 32 KiB D/I per core
L2 256 KiB / core L2 1 MiB shared
L3 8 MiB shared none
Mem 16 GiB DDR3-1333 1 GiB DDR3
Dual InterLeave @532 MHz
Net Intel 82579LM 1000 Mbit/s ENET

B. Micro-benchmarks

Our microbenchmarks compare an unmodified Base(and
thus unprotected) seL4 with DMR and TMR variants on both
the ARM and x86-64 platforms.

1) CPU-bound Micro-benchmark: To evaluate our frame-
work’s effect on CPU-bound applications, we chose a floating
point computation from the LMbench benchmark suite [45].
Specifically, we chose bogomflops, an array-based floating
point benchmark. The size of the floating-point array is 62.5
KiB. The size is 25% of the per-core private L2 cache size
on the x86-64 processor and 6% of the shared L2 cache on
the ARM processor. Within bogomflops, the operations on
the data array are repeated 100 times. We read the cycle
counter before and after the bogomflops call. We repeat this
benchmark 100 times in a loop and report the average number
of cycles per benchmark run.
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Fig. 2. A comparison of CPU-bound (floating-point) computation on x86-64.

Figures 2 and 3 show the results of the benchmark for
x86-64 and ARM respectively. Standard deviations are shown
as error bars, and are less than 0.62%. As expected, our
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Fig. 3. A comparison of CPU-bound (floating-point) computation on ARM.

framework has nearly no effect on CPU-bound applications as
they mostly execute independently within each core’s cache.

2) Memory-bound Micro-benchmark: To quantify the ef-
fect of the redundant execution on a memory-intensive appli-
cation, we used the following simple copy-based benchmark.
The application uses two memory regions (a source and a
destination) that are four times the size of the last-level cache
on the platform under test (the regions are 32 MiB on x86-64
and 4 MiB on ARM). The regions are pre-mapped to avoid
page faults. The benchmark uses memcpy () (which is based
on movsq instruction on x86-64 and ldm/stm instructions
with preloading on ARM) to copy the source buffer to the
destination buffer 100 times. We use a barrier to coordinate
the start and finish of the replicas, together with the platform’s
time-stamp counter to record start and finish times for each run.
We run the benchmark 10 times in a loop, and report average
copy bandwidth achieved in megabits/s together with standard
deviations in Figures 4 and 5.
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Fig. 4. A comparison of a memory-bound (memcopy) application on x86-64.
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Fig. 5. A comparison of a memory-bound (memcopy) application on ARM

On both platforms, we observe that the replicated con-

figurations split the total available memory copy bandwidth
between the replicas. Compared to x86-64 the ARM platform
has a lower performance penalty when moving from a non-
replicated to a replicated scenario. This is due to a single core
on ARM being insufficient to saturate the available memory
copy bandwidth of approximately 7 Gb/s. For x86-64 a single
core is much closer to saturating the available memory copy
bandwidth of approximately 68 Gb/s.

3) Interrupt Latency: Interrupt delivery in our approach
now requires propagation to all replicas and agreement on
when the interrupt becomes visible to the replicas in order
to preserve consistency. Interrupt latency is highly dependent
of system activity at the time (e.g. interrupt disabling), so
our benchmark involves an idle system consisting of only the
in-kernel idle thread, and a user-level timer driver which is
effectively an interrupt handling thread.

The timer driver programs the platform-dependent timer to
trigger an interrupt and then blocks waiting for its arrival via
IPC. To measure the effect on latency, we instrument the in-
kernel interrupt handler on the interrupt-handling core to take
a timestamp early in the interrupt handling code. We also take
a timestamp after the user-level driver receives the interrupt
notification, i.e. after the interrupt is propagated across all
cores and the notification is synchronised. The difference
between the two timestamps is our metric for interrupt latency.
The latency is measured 100 times in a loop for a baseline
unprotected seL4, and DMR and TMR variants. The average
of the 100 runs together with standard deviations are shown
for each variant for each platform in Figures 6 and 7.
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As we can observe from the results, the interrupt latency
increases significantly for DMR and TMR modes. The increase
in latency is due to the latency of sending and receiving an IPI,



and the three barriers used to coordinate consistent interrupt
observation across replicas.

C. I/O-intensive Benchmark

Load Generator Machine

I Yahoo Cloud Benchmark Suite I

%

Redis Server Machine

Netdriver + IWIP |annnuns

Redis-based benchmark architecture.

Fig. 8.

To test our system under a more realistic load we chose
the Redis key-value store set up as shown in Figure 8. The
target system runs seL4 with one process dedicated to IwIP
combined with the Ethernet device driver, including handling
I/O interrupts. Another process runs an instance of Redis. Note
that we run Redis as volatile store (we disabled file system
access), as our prototype lacks a port of a file system. The
device driver was modified as described in the description of
our framework so as to support replication in DMR, DMRS,
TMR, and TMRS configurations.

We evaluate performance using Yahoo! Cloud Serving
Benchmarks (YCSB) [46], running on a dedicated load gener-
ator machine, with a dedicated Gigabit Ethernet link between
the load generator and the machine under test. During the
benchmarks we monitor the CPU-load and network bandwidth
to ensure the benchmark performance is not limited by the load
generator.

YSCB consists of several workloads. We use the same A—
E benchmarks as presented by the benchmark developers [46],
which are as follows.

A: update-heavy workload (50/50 read and writes) using zip-
fian distribution for record selection in the store.

: read-mostly workload (95/5) with zipfian distribution.

: read-only workload with zipfian distribution

: new records inserted, then most recently inserted record
are read.

: short ranges of records are queried, where record selection
is zipfian, but the number of records in the range is
uniformly distributed.

We set recordcount to 70000 on ARM and x86-64 for
all workloads. operationcount was set to 10 and 20 times
recordcount respectively for ARM and x86-64 except for
’E’ which was 1. The goal of tuning the parameters was to
give a run time of 30-90 seconds, except for 'E’ on ARM
which was 370-500 seconds, and a database size (around 160
MiB on ARM and 190 MiB on x86-64 as reported by the ’info
memory’ Redis client command) significantly larger than the
last-level cache size.

o oaw

For each platform, we ran the YCSB benchmark set 3 times
for an unprotected uniprocessor baseline, DMR, DMRS, TMR,
and TMRS variants of the system. The averaged throughput
results are reported in Figures 9 and 10, with standard devia-
tions being less than 2.9% (x86-64) and 1.5% (ARM). Note:
we multiplied the *E’ throughput by 50 to make it comparable
on the scale.
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Fig. 9. Average Redis transactions per second on x86-64 for each configu-
ration and workload. 'E’ multiplied by 50.
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Fig. 10. Average Redis transactions per second on ARM for each configu-
ration and workload. 'E’ multiplied by 50.

We see that for the x86-64 platform the performance of
the DMR is between 77-82% of the baseline, and TMR is
71-76% of the baseline performance across all workloads. The
system call checking variants, DMRS and TMRS are 65-69%
and 57-64% of baseline respectively. For the ARM platform,
DMR achieves 79-81% of the baseline, and TMR achieves 70—
73% of the baseline performance. DMRS and TMRS variants
achieve 71-75% and 62-65% of the baseline. Replicated
execution does impose a modest performance penalty, with
system call checking further increasing the penalty in return for
increased direct coverage and more frequent trace comparison.

D. Fault Injection Experiments

Our fault injection experiment aims to empirically validate
our approach’s ability to detect faults, and convert those faults
into graceful failures. In this experiment, we use a spare CPU
core to perform fault injection into memory. While our goal
is to handle relatively rare transient faults or SEUs, our fault
model in this experiment injects multiple SEUs to compress the
time required to run the campaign. The campaign repeatedly
injects until the system under test fails, restarts the system, and
then continues fault injection. The physical address and bit to
flip are chosen randomly. The time between fault injection
is also chosen randomly between 0x10000000 to Oxffff0000
CPU cycles, as reported by the rdtsc and c15 cycle counter
registers on x86-64 and ARM respectively. Given the high
degree on non-determinism of the system under test when
combined with the benchmark harness, we don’t attempt to
seed the random number generator consistently across the two
configurations. We rely on having enough samples to observe
overall trends in the data.



The system under test is the Redis and YCSB benchmark-
ing software used previously. The YCSB benchmarking client
is modified to embed CRC32 checksums of the key-value pairs
into the values written to the Redis server. The YCSB client
can then validate the correctness of data returned by Redis
by comparing the embedded checksum with a recalculated
checksum.

We test an unprotected and a DMR version of the system.
A script monitors the outputs from the machines and YCSB
client. Once the script detects the Redis server failure or errors
reported by YCSB client, it logs the reason for failure, and
restarts the machines and YCSB client.

The following totals are accumulated over all the repeated
runs.

Total: Total faults injected.
Observed Failures: The number of system failures (graceful
or otherwise) reported by either Redis or the YCSB client.

In our DMR configuration, we count the following graceful
fail-stops that occur when our framework observes inconsis-
tency between the replicas. A graceful failure is a failure
resulting in invocation of our fault handling routine.

Kernel Barrier Timeout: A graceful fail-stop because of a
kernel-mode barrier timeout in DMR mode. A conse-
quence of one of the cores becoming non-responsive.

Kernel Trace Checksum: A graceful fail-stop because of a
trace comparison failure in DMR mode.

Other failures are uncontrolled, and we divide the failures
into the following types.

User VMF: Virtual memory faults triggered from user level.

User Other: Other exceptions triggered from user mode.

Kernel GP: A general protection fault in kernel mode.

YCSB Corrupt Result: The number of results returned by
Redis that are not correct.

YCSB Errors: Run-time exceptions reported by YCSB.

Tables II and III show the total number of fault injections
performed over all runs for an unprotected Redis configuration
and a DMR configuration, and the breakdown of the observed
failures as absolute numbers and as a percentage of the number
of failures. The difference in number of faults injected is
not indicative of anything other than length of time each
experiment has executed. However, we do observe that in
the DMR configuration, a higher proportion of failures are
observed. We believe that is due to the increased scrutiny our
DMR configuration imposes on the system.

In the unprotected case, we see the majority of the fail-
ures are application crashes due to user-level triggered VM
faults (32% and 44%) or other user-level triggered exceptions
(16%). We also see a significant fraction of failures as faults
propagated as incorrect results returned to YCSB (46% and
51%) or results that cause YCSB to throw a java run-time
exception (6% and 4%). There is also a small number of in-
kernel exceptions observed (0.7% and 0.9%) The distribution
of uncontrolled failures reflects the high proportion of memory
used by the Redis server.

In the DMR configuration we observed no uncontrolled
failures in our results. All observed failures are explicit fail-
stops triggered by our framework except for erroneous results:

TABLE II. NUMBER OF SYSTEM FAILURE TYPE OCCURRENCES AND

PERCENTAGE OF TOTAL FAILURES (X64).

Unprot. DMR
Total Injected 34412 27236
Failures 812 687
User VMF 256 | 31.53% 0 0%
User Other 126 | 15.52% 0 0%
Kernel GP 6 0.74% 0 0%
Kernel Barrier Timeout - -1 413 | 60.12 %
Kernel Trace Checksum - -1 224 | 32.60%
YCSB Corrupted Result | 375 | 46.18% 50 7.28%
YCSB Errors 49 6.03% 0 0%
TABLE III. NUMBER OF SYSTEM FAILURE TYPE OCCURRENCES AND

PERCENTAGE OF TOTAL FAILURES (ARM).

Unprot. DMR
Total Injected 195662 211759
Failures 654 921
User VMF 286 | 43.73% 0 0%
User Other 0 0% 0 0%
Kernel GP 6 0.92% 0 0%
Kernel Barrier Timeout - -1 529 | 57.44%
Kernel Trace Checksum - - | 383 | 41.58%
YCSB Corrupted Result | 335 | 51.22% 9| 0.98%
YCSB Errors 27 4.13% 0 0

7% of failures for x86-64 and 1% for ARM. The higher
proportion of observed failures for x86-64 is consistent with
our x86-64 configuration featuring DMA buffers 12 times the
size of the ARM configuration. Our system is not completely
immune from uncontrolled failures as there are small parts
of the system outside of the SoR (e.g. the DMA I/O buffers
and device registers associated with non-redundant devices
are fundamentally a single point of failure). However, in our
experiments, any faults outside the SoR propagated to the SoR,
resulting in graceful failure. We claim that our framework
significantly improves the assurance of correct operation as
it has captured all but the observed erroneous results in our
experiments. The erroneous results observed could be detected
within YSCB via integrity checksums computed within the
SoR, and then re-requested, as the results are computed
correctly, but are corrupted during I/O outside the SoR. The
majority of graceful fail-stops observed were kernel barrier
timeouts. Barrier timeouts occurs when one replica takes an
exception (or performs a system call) and the other replica
does not. The 60% and 57% observed are close to the total
proportions of uncontrolled exceptions, kernel GP, and YCSB
errors in the unprotected case which were 54% and 49%. The
remainder of the fail-stops were due to I/O output compar-
isons failing because of inconsistent output observed from the
replicas. Again the total proportions of output inconsistencies
and YCSB corrupted results (40% and 43%) are close to the
erroneous YCSB results in the unprotected case (46% and
51%).

E. Size of Changes

To give an approximation of the effort required and in-
vasiveness of our approach, Table IV shows the number of
lines of code modified or added to the microkernel for the



TABLE IV. LINES OF MODIFIED CODE IN THE MICROKERNEL

| Microkernel code | LoC |
machine-independent code | 576
x86-64 specific code 522
ARM specific code 440

machine independent and architecture-dependent parts of the
microkernel. We see that on x86-64 1098 lines of code were
modified or added to implement our microkernel mechanisms.
For ARM, it required 1016 lines of code. From a software
engineering perspective we see this as a modest cost.

In addition to microkernel changes, our approach relies on
modifying device drivers to hide non-determinism, checksum
output, and coordinate non-redundant device access. These
changes come at a software engineering cost, but not neces-
sarily a verification cost as the assurance needed for specific
drivers is determined by the system architect.

TABLE V. LINES OF MODIFIED CODE IN THE ETHERNET DRIVERS

| Ethernet code changes [ LoC |

Common 30
x86-64 Ethernet code 72
ARM Ethernet code 125

Table V shows the number of lines of code changed in
the two Ethernet drivers used in our experiments. The number
of changes are small and mostly related to managing the
descriptor rings and accessing device registers.

F. Re-establishment of Proof Guarantees

The motivation for our work is to provide further assurance
of correct operation of hardware, given the provably correct
operation of software. While our prototype does provide im-
proved assurance of correct hardware operation, it also breaks
the proofs of software correctness, and thus a discussion of
their re-establishment is warranted.

e sel4 is a uniprocessor event-based microkernel to en-
able sequential reasoning about code correctness. Our
prototype introduces concurrency only with respect to
the shared traces of the replicas that otherwise execute
independently and sequentially. We expect re-establishing
the proof of correctness to be of similar complexity to
converting seL4 to be multiprocessor kernel with a single
coarse-grained lock, which is the subject of ongoing work.

e We believe re-establishment of the correctness proofs
would enable re-establishment of the integrity guarantees
and authority confinement guarantees proven previously
without significant challenges [9].

e The non-interference proof that provides strong assurance
of confidentially guarantees is expected to be the biggest
challenge. Intuitively, a replica’s trace contains a subset
of the history of that replica across the isolation domains
within a replica. If replicas diverge, and the system grace-
fully stops, then at least one-bit of information derived
from a complex view of history has leaked to all replicas,
thus violating non-interference.

The formulation of non-interference that this behaviour
can satisfy, while still providing confidentiality guarantees

is not obvious and the subject of future research. In the
worst case, we expect our approach to retain the integrity
guarantees for safety and security critical systems where
strong confidentiality is not a priority.

VI. CONCLUSIONS AND FUTURE WORK

In order to improve the trustworthiness of commodity
hardware, we have presented an approach that uses redundant
and deterministic execution to cooperatively self-check repli-
cated microkernel-based systems. The approach consists of a
small number of changes to the microkernel, and a simple
design pattern to hide non-determinism and enable consistent
redundant execution.

We evaluated the performance of our approach in DMR
and TMR configurations for microbenchmarks and a realistic
Redis-based key/value store. The microbenchmarks showed
little change for CPU-bound systems, but for memory bound
applications, the limited total memory bandwidth available to
the replicas does reduce performance. The latency of interrupt
notification to user-level device drivers is also increased.

For a more realistic I/O intensive benchmark featuring a
mix of computation, memory access, and interrupt delivery,
the performance of a DMR configuration was approximately
77-82% of an unprotected system, and for TMR, 71-76%
on an x86-64 platform (for ARM, the performance was
approximately 79-81% and 70-73% respectively). This is a
small performance reduction in return for the extra assurance
provided by redundant execution that includes the lowest-level
software in the system. Increasing the frequency of replica
checking to every system call further reduced performance.

Our fault injection experiments showed that our approach
converted an unprotected Redis-based system that featured
uncontrolled failures and produce incorrect results into a
system that detected transient faults and gracefully performed
fail-stops. The system did propagate a small percentage of
errors to clients in our experiments, which could be detected
via integrity checksums computed within the SoR.

The changes required to implement our approach are
modest in size and are a one-off cost. However, re-verification
of the microkernel remains an open issue to be explored.

In the future, we plan to explore using the TMR configu-
ration for fault masking. Fault masking requires fault isolation
between replicas, which on commodity hardware is based on
software-configurable virtual memory hardware. If the risk of
fault propagation between partitions is acceptable, our TMR
approach could also increase the reliability of microkernel-
based systems.

When combined with a verified microkernel such as sel 4,
our mechanisms and framework together provide a very high
degree of assurance of correct, i.e. trustworthy, operation.
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