Oe

Towards

NICTA

High-Assurance

Multiprocessor Virtualisation

Michael von Tessin

PhD Student

NICTA and University of New South Wales

S AR Department of Broadband, Communications
and the Digital Economy

Australian Research Council

Sydney, Australia

NICTA Funding and Supporting Members and Partners

Ak

Industry &

meNu§<W NSW [Investment
THE AUSTRALIAN NATIONAL UNIVERSITY

v THE UNIVERSITY OF seesas. &l §% THE UNIVERS ITY
il B oww 0, we @ B
The Place ToBe MELBOURNE Government

Introduction (Yo

NICTA

mem

* sel4 (secure embedded L4) microkernel:

— provides strong isolation between components

— allows fine-grained controlled communication thread
and resource management via capabillities

— C implementation is formally verified e"dpc’im

— “verified” = refinement proof between an
abstract specification of seL.4 and the C
implementation (L4.verified, ~25py)

* main area of application: virtualisation

— microkernel is used as a hypervisor WM || VM || VMM
* resource isolation

— virtual machine monitor (VMM)

microkernel
e resource management
* runs deprivileged, on top of the microkernel _

* runs/manages virtual machines (VMs)

2

Introduction Oe

. . NICTA
e concurrency was not in scope of L4.verified:

1. able to avoid preemption-induced concurrency:
no preemption in kernel
except from a few well-defined preemption points
state saved as continuation instead of doing a stack switch

2. able to avoid hardware concurrency:
device drivers outside the kernel (standard microkernel approach)
only support uniprocessor systems

« whole world is going multicore
(even in embedded systems)

-~ want to have a multiprocessor version of seL4 with the
same strong isolation guarantees

Problem?

Introduction (Yo

NICTA

concurrency verification complexity increases
combinatorially

model checking:
— uses explicitly enumerated states
—> state explosion

theorem proving:
— non-determinism defines which instruction is executed next
— proofs have to cover every possible non-deterministic choice
- “proof explosion”

mitigation techniques:

— make proofs modular (rely-guarantee, VCC’s ownership principle)
— make the system modular - componentise it

— components use each others’ APIs (with component-local state)
—> can we componentise selL4?

Multiprocessor Kernel Designs (e

There are two fundamental ways System Software
to avoid concurrency:

« avoid parallelism (run things sequentially):
— solution: big lock around the whole kernel

) @ &

. Kernel ‘

existing system software can be run A (=) F 4
unmodified and benefit from multiple CPUs ’/ = \‘
low scalability
— still have to deal with TLB invalidation etc.
System System
« avoid sharing (partition the global state): Sl SO
— solution: multikernel approach (like in Barrelfish) . .
— run one instance of uniprocessor seL4 per CPU ‘ . \.
— res;)_?rcesd(tr)netmory, deli/Ai,C'ES)t are statically Kermnel Kormel
partitioned between selL4 instances
ﬁ perfect scalability - -

Q no interaction possible between instances @ @

Multikernel Design

« how to enable communication?

— designate region of shared memory
(shared between selL4 instances)

— kernel provides it to the system software
running on top (e.g. VMM)

— VMMs are able to implement
communication mechanisms between
Instances (e.g. a virtual network)

— kernel never accesses this shared memory
—> does not introduce concurrency into kernel

NICTA
System | System
Software Software
®"e
Kernel Kernel
CPU CPU
Memory

Verification

e goals:
— lift L4.verified proof into a multiprocessor context
— proof some important isolation/correctness properties

* milestones:
— multiprocessor execution model
— chose and implement a design: multikernel
— specification of the new multikernel-specific code
— formal connection to the L4.verified models/proofs

Multiprocessor Execution Model

* requirements:

— model weak memory ordering and fences
(version in paper only models sequentially consistent memory)

— model CPUs starting up other CPUs

— Integratable into L4.verified verification framework
result:

@
NICTA

— operational model inspired by the Cambridge x86-TSO model
— written in Isabelle/HOL

— 4 high-level instructions: Read, Write, MFENCE, StartCPU

StartCPU

CPU

_ Read

~

CPU

_ Read

~

memory
sub-
system

Multiprocessor Execution Model

datatype instr t

Read "paddr t set”
| Write “paddr t set”
| MEFENCE

| StartCPU cpu t “instr t list”

datatype acc t
Read
| Write "“paddr t set” cpu t

“paddr t set” cpu t

instr t list

) o-0-0-000-0-0
l MP execution
) model 00000000
write ——s 00000000
Read —> o =
o000
StartCPEUO #
acc_t list set

;:?FF CPU 1

PCF‘UD

CPU 2

Modelling selL4’s MP-specific Code Oe

« abstract specification:
— Haskell-like monadic style
— shallowly embedded into Isabelle/HOL
— one corresponding function for each C function

— use same framework (VCG, libs) as for
L4.verified

« only allows us to reason about sequential programs

* i.e. we read the same value from memory that we
have read/written before

« how can we connect this framework to the
multiprocessor execution model?

NICTA

MP execution model

(]

abstract specification

11

Modelling seL4’s MP-specific Code Oe

NICTA

1. want to assume CPU-local sequential semantics
(proofs over the abstract specification rely on it)

2. map abstract operations to MP execution model
(monadic “execution” creates high-level-instruction list)

3. use MP execution model to prove that sequential
semantics are observed

instr_t li=t

Abstract l MP execution

= =) resa = og @W

StartCPEO

LLLLLE
I
L4

acc_t list =set

CPUA1

CPUD
CcPU2

12

Modelling selL4’s MP-specific Code e

NICTA
« advantages:
— decouples reasoning about concurrency artefacts from
reasoning about program internals (functionality)
— makes modelling and proofs more modular
 |imitations:
— restricts the kind of parallel programs and properties that can
be proved

— e.g. no lock-free data structures and algorithms
(where functionality and concurrency are inherently coupled)

- not a problem because | took special care while doing
the multikernel design/implementation of selL4

13

system boot loader
(e.g. BIOS/GRUB)

boot kernel ()

Q\

tn

g
tart cpul()

Y

shared
state

1

boot _kernel instance()

boot kernel instance ()

init kernel instance(
instance = 0
memery = ...
devices = ...

init kernel instance (
instance = 1
mEMOry = ...
devices = ...

EernselMode

NICTA

o jooq
-

A3y auiood |

| yed

_—
-

oeaur
Z Hed
aseyd Buiddelisioog

Ay dnjood |

aseyd awnunl

cow |
J @
ik
O o
9=
(o I
S 9
w o
85
T
e
83
a g
D —

14

Modelling seL4’s MP-specific Code

— proof wouldn’t be that hard if the kernel only had static data
— sel4 allows allocating/deallocating kernel objects at runtime
— heavily uses dynamic allocation during bootstrapping

— memory contents (kernel heap) modeled as:
 partial function from memory addresses to kernel objects

— complexity of model:

_ semantics data :
Isabelle code: functions
of model structures

bootstrapping phase 200 LOC 400 LOC 600 LOC

15

Properties Proved e

NICTA

1. Kernel-Memory-Access Theorem
— The kernel behaves correctly wrt. concurrency,
l.e. it always observes CPU-local sequential semantics.
2. Virtualisation Theorem
— correctness of system software (e.g. VMM)

— system software can rely on
 the provided shared memory to actually be shared between instances.
 all other memory (code, data, devices) not to be shared.

3. The refinement proof of uniprocessor selL.4 remains valid.

Proof size:
— 5500 LOC of machine-checked Isabelle proof script

— mostly hoare triples

16

Kernel-Memory-Access Theorem (Je

NICTA

Three proof steps:

1. prove that all kernel objects and capabilities created during

bootstrapping of an selL4 instance lie in the memory region
assigned to that instance

2. prove the following property about the parallel high-level-
Instruction program of the bootstrapping phase:

“For all StartCPU high-level instructions,
there no overlap between the physical memory region

read by the subsequent instructions and written by the instructions of the started CPU,
written by the subsequent instructions and read by the instructions of the started CPU.”

instr t list

Abstract

specification i T
Write _ _w@
|:> Eead — ()
_—D StartCPU ?
o]
O

0 CPU 1
L)

CPU 0 17

CcPU 2

Kernel-Memory-Access Theorem (e

NICTA

3. [almost completed]
prove, using the MP execution model, that all observable

memory access histories exhibit sequential semantics:

“For all physical addresses and for all CPUs,
between every pair of a read/write followed by a later read,
no write by another CPU must occur.”

instr_t li=tc

l MP execution
model

frrale QN 03 o) 00000 00n

StartcCPUO

acc t li=t =et

CPUA

CPU 0
CPU2

18

Lifting the L4.verified proof e

NICTA

“The refinement proof of uniprocessor selL4 remains valid.”

— informal argument:
» L4.verified proof only covers the runtime phase, not the bootstrapping phase
 for the multikernel design, only bootstrapping code had to be changed
» the code of the runtime phase stayed the same
« each instance observes sequential semantics
—> refinement proof still holds

— formal connection to L4.verified model/proof:
 state relation between my kernel state and L4.verified’s (~150 LOC)
* L4.verified refinement statement: CLA
» multikernel refinement statement: C inst_id C A inst_id
« only had to modify a few dozen LOC in the top-level refinement proof

—> details are in paper

19

Conclusion Oe

NICTA
Contributions:
* two kernel designs that avoid concurrency:
— big-lock design

— multikernel design, extended with shared memory provided to
system software (e.g. VMM)

* multiprocessor execution model
— Input: a parallel high-level-instruction program
— output: all observable memory access histories

 abstract specification of seL4’s multikernel-specific code

* kernel-memory-access and virtualisation theorems
 state relation connecting my kernel state with L4.verified’s
* new multikernel top-level refinement statement

20

NICTA

Interested In the Isabelle code?
- michael.vontessin@nicta.com.au

Thank you!

21

mailto:michael.vontessin@nicta.com.au

