
NICTA Copyright 2012 From imagination to impact 1

The Clustered Multikernel:

An Approach to Formal Verification

of Multiprocessor OS Kernels

Michael von Tessin

PhD Student

NICTA and University of New South Wales

Sydney, Australia

NICTA Copyright 2012 From imagination to impact

Introduction

• OS kernel is a critical software component in computer systems

• building secure, safe and reliable computer systems is facilitated by

having strong kernel correctness guarantees

 formal verification down to implementation level

2

• seL4 (secure embedded L4) microkernel:

– provides strong isolation between components

– allows fine-grained controlled communication

and resource management via capabilities

– C implementation is formally verified

– property: functional correctness

cap mem

cap thread

cap endpoint cap

NICTA Copyright 2012 From imagination to impact

Refinement Background

Property: functional correctness

• proved by refinement

• abstract: specification
– abstract program modifies abstract state

• concrete: implementation
– concrete program modifies concrete state

• refinement automaton:
– non-deterministic finite state automaton

– initialisation function sets up initial state
(corresponds to bootstrapping phase of kernel)

– events trigger transitions between states
(models the runtime phase of kernel)

• refinement proof:
– consists of:

1. correspondence proofs, which sometimes require

2. invariant proofs

– transfers theorems proved on the abstract level down to the
concrete level  sufficient to prove theorems on abstract level

3

Abstract Program

Concrete Program

schedule ≡ do

 threads ← allRunnableThreads;

 thread ← select threads;

 switch_to_thread thread

od

void schedule()

{

 if (!isRunnable(curThread) ||

 curThread->timeSlice == 0)

 switchToRunnableThread();

}

Isabelle/HOL

C

Refinement Proof

Refinement Automaton

kernel

idle

user

init

NICTA Copyright 2012 From imagination to impact

Motivation

4

• L4.verified approach has no concurrency in the model:

1. able to avoid preemption-induced concurrency:
• no preemption in kernel

• except from two well-defined preemption points

• instead of doing a stack switch, kernel saves state as continuation and exits

2. able to avoid hardware concurrency:
• device drivers outside the kernel (standard microkernel approach)

• only support uniprocessor systems

• whole world is going multicore (even in embedded systems)

 need for verified multiprocessor kernels arises
• aim: want to have a multiprocessor version of seL4 with the same

functional correctness guarantees

• want to leverage as much of the uniprocessor proof as possible
– L4.verified total effort: ~25py / 200 kLOC of proof

Challenges?

NICTA Copyright 2012 From imagination to impact

Verification Complexity

5

• we are hit with full concurrency of multiple CPUs

• proof needs to cover all possible “conceptual scenarios”
which can arise from concurrent execution

• verification complexity depends on:

– program complexity

– property we want to prove

– state we share (if concurrency is involved)

• mitigation techniques:

– make proofs modular (e.g. rely-guarantee, ownership principle)
• only works if modeled system can somehow be viewed in a modular way

– make the system modular  componentise it

– microkernels cannot be componentised

 approach:

– reduce the number of “conceptual scenarios” to a minimum

– by avoiding complexity potentially introduced by parallelism

NICTA Copyright 2012 From imagination to impact

Multiprocessor Kernel Designs

6

There are two fundamental ways to avoid complexity

potentially introduced by parallelism:

1. avoid parallelism itself (run things sequentially):

– solution: big lock around the whole kernel

– existing uniprocessor userlevel applications can be

run unmodified and automatically benefit from the

power of multiple CPUs

– low scalability

m
e

m
o

ry

userlevel

kernel

untyped

kernel

idle

user

kernel

idle

user

CPU A CPU B

NICTA Copyright 2012 From imagination to impact

Multiprocessor Kernel Designs

7

There are two fundamental ways to avoid complexity

potentially introduced by parallelism:

2. establish independence (avoid sharing):

– solution: restricted multikernel design

– run one node of uniprocessor seL4 per CPU

– kernel memory is partitioned between nodes

– static region of shared userlevel memory

– communication via userlevel memory and IPIs

– high scalability

– userlevel applications must be node-aware

– no flexible kernel-memory usage

between nodes

shared memory

node memory

userlevel

kernel

node memory

userlevel

kernel

msg

IPI

untyped untyped

kernel

idle

user

kernel

idle

user

CPU A CPU B

n
o

d
e

in
it
.

n
o

d
e

in
it
.

s
y
s
te

m

in
it
.

StartCPU
CPU A CPU B

b
o

o
ts

tr
a
p

p
in

g

NICTA Copyright 2012 From imagination to impact

The Clustered Multikernel

8

• now we have two designs:

– big-lock kernel: high flexibility, low scalability

– multikernel: low flexibility, high scalability

• combine them: clustered multikernel

– like multikernel, but a node can span more than one CPU

– within a node, kernel data is protected by a big lock

– CPUs can be freely assigned to nodes

performance-optimisation
opportunities:

– cluster of cores within a CPU

– NUMA-aligned clusters

– clustering for systems with
“islands of cache coherence”

– clustering along
performance-isolation
boundaries

implementation: seL4::CMK
node memory

shared memory

node memory

msg

IPI

userlevel

kernel

untyped

kernel

idle

user

kernel

idle

user

userlevel

kernel

untyped

kernel

idle

user

kernel

idle

user

CPU A CPU B CPU C CPU D

NICTA Copyright 2012 From imagination to impact

Lifting seL4’s Refinement Proofs

• lifting proofs = reusing proved theorems in a more generic context
– e.g., a proved hoare triple over a kernel-internal function can be directly

reused in the clustered-multikernel proof if we prove that this particular
function is not exposed to concurrency

• refinement lifting proof consists of:

– abstract specification of seL4::CMK’s code

– model of a total-store-order (TSO) multiprocessor architecture
• deal with weak memory ordering, memory fences

• needed for inherently concurrent bootstrapping phase of the kernel

– node-isolation proof
• want to be able to reason about each node in isolation

• show: for seL4::CMK, refinement holds for each node in isolation

– within each node:
• refinement automaton represents runtime phase of the kernel

• lifting of the refinement automaton into a parallel composition of itself

• specifications and proofs are machine-checked in Isabelle/HOL

9

NICTA Copyright 2012 From imagination to impact

TSO Multiprocessor Model

10

• challenges:

– weak memory ordering and fences

– in presence of CPUs starting up other CPUs (also nested)

– integratable into L4.verified verification framework

• model:

– operational model, inspired by the Cambridge x86-TSO model

– 4 high-level instructions: Read, Write, MFENCE, StartCPU

• proof:

– generic sequential-semantics theorem (MFENCEs, starting seq.)

CPU
memory

sub-

system

store buffer

Read

Write

CPU

S
ta

rt
C

P
U

store buffer

Read

Write

program order

preserved

R,R 

W,W 

R,W 

W,R 

NICTA Copyright 2012 From imagination to impact

Lifting into Parallel Composition

11

• lifting operation:
– converts an arbitrary refinement automaton into parallel composition

• lifting theorem:
– “When applying the lifting operation to the refinement automata of both

abstract and concrete levels of an arbitrary refinement proof:
the concrete parallel refinement automaton
refines the abstract parallel refinement automaton
if the original concrete refinement automaton
refines the original abstract refinement automaton.”

state

kernel

idle

user

kernel

idle

user

LA

CPU A CPU B

LB

state

kernel

idle

user

CPU

L

lifting op.

• transitions are interleaved non-det.

• original state is shared between CPUs
– except for small subset which is local,

i.e. duplicated for each CPU (LA, LB)

– each CPU can modify the shared state
and its own local state

• precondition:
– original invariants need to be splittable

– unsplittable ones proved manually
• in seL4: valid pointer to currently running thread

NICTA Copyright 2012 From imagination to impact

Thread-Deletion Problem

12

• could not prove seL4’s unsplittable invariants (did not hold)

kernel state within a node

CPU A CPU B

thread A thread B

thread C

thread D
del.

del.

• thread-deletion problem:

– formally: CPU B’s pointer to the currently running thread

is not valid anymore if thread B is deleted by thread A

running on CPU A

– could not happen in uniprocessor case: only one thread

currently running

• fix (add necessary coordination):

– 2 new thread states (“current”, “current req. inactive”)

– 8 new preemption points (before del./mod. of threads)

– reason: event-based structure of seL4

• specifically: no kernel-thread blocking allowed

– changes small but invasive

 increased proof complexity considerably

summary:

• specific to seL4, but likely to occur in other kernels as well

• a good example in showing the bug-finding abilities of theorem proving in
general, and the lifting theorem in particular

NICTA Copyright 2012 From imagination to impact

Related Work

• Barrelfish:

– multikernel OS designed for heterogeneous multiprocessing

– follows a distributed-system approach by keeping kernel data

structures local to a CPU or replicated on other CPUs

– communication between nodes message-based, on userlevel

clustered kernels in the early 90s:

• Hurricane:

– used clustering to improve data locality on large-scale NUMA machines

• Hive:

– aimed at fault isolation between clusters

 performed well for certain kinds of applications, but suffered

 from high complexity and unpredictable performance in general

• probably because they tried to hide clustering from userlevel and

provide a single-system image

13

NICTA Copyright 2012 From imagination to impact

Conclusion and Future Work

14

Conclusion:

• implementation effort for seL4::CMK (diff. to seL4): ~0.5 kLOC

• the proof effort was ~9 kLOC (*conditions apply)

• not aware of a successful refinement proof of a multiprocessor kernel

• given a verified uniprocessor kernel, the clustered multikernel offers a way to

achieve this with relatively low effort

– compare ~0.5 kLOC to seL4’s code size of ~8.7 kLOC

– compare ~9 kLOC to L4.verified's overall proof size of ~200 kLOC

Future Work:

• performance/scalability evaluation showing that the

clustered multikernel is a “viable alternative” to a classical MP kernel:

– a classical MP kernel (fine-grained locks/lock-free) would give us:

1. good scalability, and at the same time

2. flexible kernel-memory usage across CPUs

– but for verification reasons, we restrict ourselves to a clustered multikernel

where we only get a static tradeoff between (1) and (2)

 want to show (benchmarks) that this is NOT a serious restriction

NICTA Copyright 2012 From imagination to impact

Questions?

15

