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Introduction 

• OS kernel is a critical software component in computer systems 

• building secure, safe and reliable computer systems is facilitated by 

having strong kernel correctness guarantees 

 formal verification down to implementation level 
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• seL4 (secure embedded L4) microkernel: 

– provides strong isolation between components 

– allows fine-grained controlled communication 

and resource management via capabilities 

– C implementation is formally verified 

– property: functional correctness 

cap mem 

cap thread 

cap endpoint cap 
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Refinement Background 

Property: functional correctness 

• proved by refinement 

• abstract: specification 
– abstract program modifies abstract state 

• concrete: implementation 
– concrete program modifies concrete state 

 

• refinement automaton: 
– non-deterministic finite state automaton 

– initialisation function sets up initial state 
(corresponds to bootstrapping phase of kernel) 

– events trigger transitions between states 
(models the runtime phase of kernel) 

 

• refinement proof: 
– consists of: 

1.  correspondence proofs, which sometimes require 

2.  invariant proofs 

– transfers theorems proved on the abstract level down to the 
concrete level  sufficient to prove theorems on abstract level 
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Abstract Program 

Concrete Program 

schedule ≡ do 

  threads ← allRunnableThreads; 

  thread ← select threads; 

  switch_to_thread thread 

od 

void schedule() 

{ 

  if (!isRunnable(curThread) || 

      curThread->timeSlice == 0) 

    switchToRunnableThread(); 

} 

Isabelle/HOL 

C 

Refinement Proof 

Refinement Automaton 

kernel 

idle 

user 

init 
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Motivation 
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• L4.verified approach has no concurrency in the model: 

1. able to avoid preemption-induced concurrency: 
• no preemption in kernel 

• except from two well-defined preemption points 

• instead of doing a stack switch, kernel saves state as continuation and exits 

 

2. able to avoid hardware concurrency: 
• device drivers outside the kernel (standard microkernel approach) 

• only support uniprocessor systems 

 

• whole world is going multicore (even in embedded systems) 
 

 need for verified multiprocessor kernels arises 
• aim: want to have a multiprocessor version of seL4 with the same 

functional correctness guarantees 

• want to leverage as much of the uniprocessor proof as possible 
– L4.verified total effort: ~25py / 200 kLOC of proof 

 

Challenges? 
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Verification Complexity 
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• we are hit with full concurrency of multiple CPUs 

• proof needs to cover all possible “conceptual scenarios” 
which can arise from concurrent execution 

• verification complexity depends on: 

– program complexity 

– property we want to prove 

– state we share (if concurrency is involved) 

 

• mitigation techniques: 

– make proofs modular (e.g. rely-guarantee, ownership principle) 
• only works if modeled system can somehow be viewed in a modular way 

– make the system modular  componentise it 

– microkernels cannot be componentised 

 
 approach: 

– reduce the number of “conceptual scenarios” to a minimum 

– by avoiding complexity potentially introduced by parallelism 
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Multiprocessor Kernel Designs 
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There are two fundamental ways to avoid complexity 

potentially introduced by parallelism: 

 

1. avoid parallelism itself (run things sequentially): 

– solution: big lock around the whole kernel 

– existing uniprocessor userlevel applications can be 

run unmodified and automatically benefit from the 

power of multiple CPUs 

– low scalability 
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Multiprocessor Kernel Designs 
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There are two fundamental ways to avoid complexity 

potentially introduced by parallelism: 

 

2. establish independence (avoid sharing): 

– solution: restricted multikernel design 

– run one node of uniprocessor seL4 per CPU 

– kernel memory is partitioned between nodes 

– static region of shared userlevel memory 

– communication via userlevel memory and IPIs 

– high scalability 

– userlevel applications must be node-aware 

– no flexible kernel-memory usage 

between nodes 
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The Clustered Multikernel 
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• now we have two designs: 

– big-lock kernel: high flexibility, low scalability 

– multikernel:  low flexibility, high scalability 
 

• combine them: clustered multikernel 

– like multikernel, but a node can span more than one CPU 

– within a node, kernel data is protected by a big lock 

– CPUs can be freely assigned to nodes 

performance-optimisation 
opportunities: 

– cluster of cores within a CPU 

– NUMA-aligned clusters 

– clustering for systems with 
“islands of cache coherence” 

– clustering along 
performance-isolation 
boundaries 
 

implementation: seL4::CMK 
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Lifting seL4’s Refinement Proofs 

• lifting proofs = reusing proved theorems in a more generic context 
– e.g., a proved hoare triple over a kernel-internal function can be directly 

reused in the clustered-multikernel proof if we prove that this particular 
function is not exposed to concurrency 

 

• refinement lifting proof consists of: 

– abstract specification of seL4::CMK’s code 

– model of a total-store-order (TSO) multiprocessor architecture 
• deal with weak memory ordering, memory fences 

• needed for inherently concurrent bootstrapping phase of the kernel 

– node-isolation proof 
• want to be able to reason about each node in isolation 

• show: for seL4::CMK, refinement holds for each node in isolation 

– within each node: 
• refinement automaton represents runtime phase of the kernel 

• lifting of the refinement automaton into a parallel composition of itself 

 

• specifications and proofs are machine-checked in Isabelle/HOL 

9 
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TSO Multiprocessor Model 
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• challenges: 

– weak memory ordering and fences 

– in presence of CPUs starting up other CPUs (also nested) 

– integratable into L4.verified verification framework 

• model: 

– operational model, inspired by the Cambridge x86-TSO model 

– 4 high-level instructions: Read, Write, MFENCE, StartCPU 

• proof: 

– generic sequential-semantics theorem (MFENCEs, starting seq.) 
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Lifting into Parallel Composition 
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• lifting operation: 
– converts an arbitrary refinement automaton into parallel composition 

 

• lifting theorem: 
– “When applying the lifting operation to the refinement automata of both 

abstract and concrete levels of an arbitrary refinement proof: 
the concrete parallel refinement automaton 
refines the abstract parallel refinement automaton 
if the original concrete refinement automaton 
refines the original abstract refinement automaton.” 

state 

kernel 

idle 

user 

kernel 

idle 

user 

LA 

CPU A CPU B 

LB 

state 

kernel 

idle 

user 

CPU 

L 

lifting op. 

• transitions are interleaved non-det. 

• original state is shared between CPUs 
– except for small subset which is local, 

i.e. duplicated for each CPU (LA, LB) 

– each CPU can modify the shared state 
and its own local state 

• precondition: 
– original invariants need to be splittable 

– unsplittable ones proved manually 
• in seL4: valid pointer to currently running thread 
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Thread-Deletion Problem 
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• could not prove seL4’s unsplittable invariants (did not hold) 

kernel state within a node 

CPU A CPU B 

thread A thread B 

thread C 

thread D 
del. 

del. 

• thread-deletion problem: 

– formally: CPU B’s pointer to the currently running thread 

is not valid anymore if thread B is deleted by thread A 

running on CPU A 

– could not happen in uniprocessor case: only one thread 

currently running 

• fix (add necessary coordination): 

– 2 new thread states (“current”, “current req. inactive”) 

– 8 new preemption points (before del./mod. of threads) 

– reason: event-based structure of seL4 

• specifically: no kernel-thread blocking allowed 

– changes small but invasive 

 increased proof complexity considerably 

summary: 

• specific to seL4, but likely to occur in other kernels as well 

• a good example in showing the bug-finding abilities of theorem proving in 
general, and the lifting theorem in particular 
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Related Work 

• Barrelfish: 

– multikernel OS designed for heterogeneous multiprocessing 

– follows a distributed-system approach by keeping kernel data      

structures local to a CPU or replicated on other CPUs 

– communication between nodes message-based, on userlevel 

 

clustered kernels in the early 90s: 

• Hurricane: 

– used clustering to improve data locality on large-scale NUMA machines 

• Hive: 

– aimed at fault isolation between clusters 

 performed well for certain kinds of applications, but suffered 

     from high complexity and unpredictable performance in general 

• probably because they tried to hide clustering from userlevel and 

provide a single-system image 

13 
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Conclusion and Future Work 
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Conclusion: 

• implementation effort for seL4::CMK (diff. to seL4): ~0.5 kLOC 

• the proof effort was ~9 kLOC (*conditions apply) 

• not aware of a successful refinement proof of a multiprocessor kernel 

• given a verified uniprocessor kernel, the clustered multikernel offers a way to 

achieve this with relatively low effort 

– compare ~0.5 kLOC to seL4’s code size of ~8.7 kLOC 

– compare ~9 kLOC to L4.verified's overall proof size of ~200 kLOC 
 

Future Work: 

• performance/scalability evaluation showing that the  

clustered multikernel is a “viable alternative” to a classical MP kernel: 

– a classical MP kernel (fine-grained locks/lock-free) would give us: 

1. good scalability, and at the same time 

2. flexible kernel-memory usage across CPUs 

– but for verification reasons, we restrict ourselves to a clustered multikernel 

where we only get a static tradeoff between (1) and (2) 

 want to show (benchmarks) that this is NOT a serious restriction 
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Questions? 
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