NICTA

The Clustered Multikernel:
An Approach to Formal Verification
of Multiprocessor OS Kernels

Michael von Tessin

PhD Student
NICTA and University of New South Wales
Sydney, Australia

NICTA Funding and Supporting Members and Partners
i!-m‘ Trade &
m Investment ‘

iff THE UNIV
W GriEth = B sy

Ousensland Universiy of Technology W0 AusTRALIA

' 9@’ Australian Government
R | e i

75X Department of Broadband, Communications MELBOURNE

and the Digital Economy

Australian Research Council

Introduction Je

 OS kernel is a critical software component in computer systems

» Dbuilding secure, safe and reliable computer systems is facilitated by
having strong kernel correctness guarantees

- formal verification down to implementation level

* sel4 (secure embedded L4) microkernel: mem
— provides strong isolation between components @
. . . . hread
— allows fine-grained controlled communication e .

and resource management via capabillities en P

— C implementation is formally verified
— property: functional correctness \6
& /a

Refinement Background

@ [

Property: functional correctness
proved by refinement

abstract: specification
— abstract program modifies abstract state

concrete: implementation
— concrete program modifies concrete state

refinement automaton:
— non-deterministic finite state automaton
— initialisation function sets up initial state

[Abstract Program]

RefinemenﬁDroof

[Concrete Program}

(corresponds to bootstrapping phase of kernel)

— events trigger transitions between states
(models the runtime phase of kernel)

refinement proof:
— consists of:

1. correspondence proofs, which sometimes require

2. invariant proofs

— transfers theorems proved on the abstract level down to the
concrete level - sufficient to prove theorems on abstract level

NICTA

schedule = do Isabelle/HOL

threads « allRunnableThreads;
thread « select threads;
switch to thread thread

od 7

void schedule ()
{
if (!isRunnable (curThread) ||
curThread->timeSlice == 0)
switchToRunnableThread () 7

}

Refinement Automaton

- «init
a3

Motivation (e

.. _ NICTA
« L4.verified approach has no concurrency in the model:

1. able to avoid preemption-induced concurrency:
no preemption in kernel
except from two well-defined preemption points
instead of doing a stack switch, kernel saves state as continuation and exits

2. able to avoid hardware concurrency:
device drivers outside the kernel (standard microkernel approach)
only support uniprocessor systems

« whole world is going multicore (even in embedded systems)

- need for verified multiprocessor kernels arises

« aim: want to have a multiprocessor version of seL4 with the same
functional correctness guarantees

« want to leverage as much of the uniprocessor proof as possible
— L4.verified total effort: ~25py / 200 kLOC of proof

Challenges?

Verification Complexity (Je

NICTA
« we are hit with full concurrency of multiple CPUs

 proof needs to cover all possible “conceptual scenarios”
which can arise from concurrent execution

 verification complexity depends on:
— program complexity
— property we want to prove
— state we share (if concurrency is involved)

* mitigation techniques:

— make proofs modular (e.g. rely-guarantee, ownership principle)
« only works if modeled system can somehow be viewed in a modular way

— make the system modular = componentise it
— microkernels cannot be componentised

-> approach:
— reduce the number of “conceptual scenarios” to a minimum
— by avoiding complexity potentially introduced by parallelism

Multiprocessor Kernel Designs

There are two fundamental ways to avoid complexity
potentially introduced by parallelism:

1. avoid parallelism itself (run things sequentially):
— solution: big lock around the whole kernel

=Y existing uniprocessor userlevel applications can be
run unmodified and automatically benefit from the
power of multiple CPUs

& low scalability

Ty v
1Y N
Cide> || Cide >

kernel

untyped

Multiprocessor Kernel Designs

There are two fundamental ways to avoid complexity

potentially introduced by parallelism:

2. establish independence (avoid sharing):

— solution: restricted multikernel design

static region of shared userlevel memory

communication via userlevel memory and IPIs

ﬁ high scalability

run one node of uniprocessor selL4 per CPU
kernel memory is partitioned between nodes

ey userlevel applications must be node-aware

no flexible kernel-memory usage
between nodes

bootstrapping
A

NICT
CPUA CPUB
i shared memory i
|| userlevel Tmsg 1) userlevel :
' N\ I
;_ |
1
IR\ L
I 1 i |
: | l :
I \ v ! i v/ !
|
| @»| || |
1
| 1 | I W\ !
I I : I
| L op | |
i | kernel | Pl 1t kernel |
| 1 i
i untyped i i untyped i
| | s

StartCPU

node memory

The Clustered Multikernel Yo

 now we have two designs:
— big-lock kernel: high flexibility, low scalability
— multikernel: low flexibility, high scalability

« combine them: clustered multikernel
— like multikernel, but a node can span more than one CPU
— within a node, kernel data is protected by a big lock
— CPUs can be freely assigned to nodes

cPUA] [CRUB ELEC CPUD performance-optimisation
| shared memory i opportunities:

i userlevel ([msgD) userlevel — cluster of cores within a CPU
& Ml = — NUMA-aligned clusters

— clustering for systems with

J

i Vv [w7 o \ ¥ v/ “islands of cache coherence’
| EPpEn> || — clustering along

| .N A S Y (P g performance-isolation

i kernel <: [P !; kernel bOUﬂdarleS

i untyped i i untyped

Implementation: seL4::CMK

8

Lifting seL4’s Refinement Proofs (Jeo

NICTA

« lifting proofs = reusing proved theorems in a more generic context

— e.g., a proved hoare triple over a kernel-internal function can be directly
reused in the clustered-multikernel proof if we prove that this particular
function is not exposed to concurrency

« refinement lifting proof consists of:
— abstract specification of seL4::CMK’s code
— model of a total-store-order (TSO) multiprocessor architecture

» deal with weak memory ordering, memory fences
* needed for inherently concurrent bootstrapping phase of the kernel

— node-isolation proof
e want to be able to reason about each node in isolation
* show: for seL4::CMK, refinement holds for each node in isolation

— within each node:
« refinement automaton represents runtime phase of the kernel
« lifting of the refinement automaton into a parallel composition of itself

« specifications and proofs are machine-checked in Isabelle/HOL

TSO Multiprocessor Model

« challenges:
— weak memory ordering and fences

NICTA

— In presence of CPUs starting up other CPUs (also nested)
— Integratable into L4.verified verification framework

* model:

— operational model, inspired by the Cambridge x86-TSO model
— 4 high-level instructions: Read, Write, MFENCE, StartCPU

e proof:

— generic sequential-semantics theorem (MFENCEsS, starting seq.)

Write
Read

StartCPU

Write
o Read

memory
sub-
system

program order
preserved

R,R v
W,W v
R,W v

W,R x

10

Lifting into Parallel Composition ([Jo

o . NICTA
+ lifting operation:

— converts an arbitrary refinement automaton into parallel composition

 lifting theorem:

— “When applying the lifting operation to the refinement automata of both
abstract and concrete levels of an arbitrary refinement proof:
the concrete parallel refinement automaton
refines the abstract parallel refinement automaton
if the original concrete refinement automaton
refines the original abstract refinement automaton.”

= E=mn gEEmmm ¢ transitions are interleaved non-det.

——————————————————————————————— original state is shared between CPUs

— except for small subset which is local,
l.e. duplicated for each CPU (L,, Lg)

i — each CPU can maodify the shared state
i and its own local state

e precondition:
— original invariants need to be splittable

— unsplittable ones proved manually
"""""" ! FTTTT e * in selL4: valid pointer to currently running thread

11

Thread-Deletion Problem (Jo

« could not prove selL4’s unsplittable invariants (did not hold)
» thread-deletion problem: {kernel state within a node |

— formally: CPU B'’s pointer to the currently running thread
Is not valid anymore if thread B is deleted by thread A
running on CPU A

| 1

= |

: I

: I

: I

: I

! thread D I

o | del i
— could not happen in uniprocessor case: only one thread ! l
| 1

| |

: I

' I

' I

: I

| 1

thread C

currently running del.

Y

thread A thread B

* fix (add necessary coordination): Y CPUB
— 2 new thread states (“current”, “current req. inactive®) ______________________ j
— 8 new preemption points (before del./mod. of threads)
— reason: event-based structure of seL4
» specifically: no kernel-thread blocking allowed
— changes small but invasive

- increased proof complexity considerably

summary:
» specific to selL4, but likely to occur in other kernels as well

« agood example in showing the bug-finding abilities of theorem proving in
general, and the lifting theorem in particular

12

Related Work (Yo

 Barrelfish: NICTA

— multikernel OS designed for heterogeneous multiprocessing

— follows a distributed-system approach by keeping kernel data
structures local to a CPU or replicated on other CPUs

— communication between nodes message-based, on userlevel

clustered kernels in the early 90s:
* Hurricane:

— used clustering to improve data locality on large-scale NUMA machines
* Hive:

— aimed at fault isolation between clusters

- performed well for certain kinds of applications, but suffered
from high complexity and unpredictable performance in general

* probably because they tried to hide clustering from userlevel and
provide a single-system image

13

Conclusion and Future Work (Jo

Conclusion: NICTA

* implementation effort for seL4::CMK (diff. to seL4): ~0.5 kLOC
» the proof effort was ~9 kLOC (*conditions apply)
* not aware of a successful refinement proof of a multiprocessor kernel

« given a verified uniprocessor kernel, the clustered multikernel offers a way to
achieve this with relatively low effort
— compare ~0.5 kKLOC to seL4’s code size of ~8.7 KLOC
— compare ~9 kLOC to L4.verified's overall proof size of ~200 kLOC

Future Work:

« performance/scalability evaluation showing that the
clustered multikernel is a “viable alternative” to a classical MP kernel:
— a classical MP kernel (fine-grained locks/lock-free) would give us:
1. good scalability, and at the same time
2. flexible kernel-memory usage across CPUs

— but for verification reasons, we restrict ourselves to a clustered multikernel
where we only get a static tradeoff between (1) and (2)

- want to show (benchmarks) that this is NOT a serious restriction
14

NICTA

Questions?

15

