(® A scalable Lock Manager
SICTA for Multicores

Hyungsoo Jung Hyuck Han Alan Fekete

NICTA Samsung Electronics University of Sydney

Gernot Heiser Heon Y. Yeom
NICTA Seoul National University

NICTA Funding and Supporting Members and Partners

*
e g 1 4 s
5 -9 % Australian Government Australian UNSW N o ;;’
e ‘,‘7" = tional NSW i YRV o
b4 ‘-afi':ui' Department of Broadband, Communications University THE UNIVERSITY OF NEW SOUTH WALES mNsw Investment MELBOURNE
and the Digital Economy @
B * THE UNIVERSITY OF T EE THE UNIVERSITY
Australian Research Council 5%:3 SYPNEY ... 1 Wy Giriffith W — \u/?fuo‘lﬁf:m AND
eeeeeeeeee

@University of Sydney

Moore's Law Yo

--Gordon Moore, Intel co-founder

Moore's Law Oe

Transistor count

NICTA

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Core SPARC T3
Six-Core Core i7.
2,600,000,000 - SxCore Xean 7400, "\ L 10.Cora Xoan WostmWEX
Dual-Core han;m‘:; . ‘:g-l:‘:g&? al;gv;_nligg
1,000,000,000 POWERS®" o e ase
itanium 2 with SMB cache @ ™. Six-Core Opteron 2400
Ceore I7 (Quad)
Itanium 2 @ ngle 2B
100,000,000 -
Pentium 4 ® Atom
° ﬁRn"B g-m
curve shows transistor AMD K8
10,000,000 count doubling every o o obun [l
two years SHDIE
Pentium
1,000,000
100,000 transistors.
10,000
8080
5009@ /" @MOS 6502
2,300 - 4004@ “Rca 1s02
[T T T 1
1971 1980 1990 2000 2011

Date of introduction 2013

Moore's Law goes Multicores (e
NICTA

But what about the software?

Database Management Systems : our focus !!!!

Enterprise Software Systems (Not explored completely)

MULTICORE MACHINES

This research tries to solve ..

Multi-core scalability problems of DBMS
engines (running at SERIALIZABLE
Isolation) by eliminating latching overhead
In a lock manager.

— Kee
— Unli

0 overall architecture the same
Ke larger redesigns proposed by Johnson

eta

..and Thomson et al.

Now let's see some background.

Latch protecting Lock table (MySQL) (e

Lock Acquire in Growing Phase

n_lock = lock creale
n_lock->state = ACTIVE;
lock insert(n_lock);
for all locks (lock) in hash bucket
if (lock is incompatible with n_ lock)
n_lock-=state = WAIT,;
if (deadlock check() ==TRUE)
abort Tx;
break;

else

continue;
end if

mutex enter(Tx->mutex);
Tx-=state = WAIT;
os_cond_wait(Tx->mutex);
mutex exit(Tx->mutex);

end if

NICTA

Lock Release in Shrinking Phase

mutex enter(lock table->mutex);

or all Tocks (lockT) mnTx
lock release(lockl);
for all locks (lock2) following lock1
if (lock2 doesn't have to wait)
lock grant(lock2);
lock2->state=ACTIVE;
end if
end for
end for

mutex_exit(lock table->mutex);

Lock Table Mutex (or Latch)

Lock vs. Latch : Database Lock Oe

Database Management Systems

NICTA

el

\J

Time

Duration is long (S2PL)
Sleeping when locks conflict

Lock conflicts don’t cause
the observed
performance collapse "W

Lock vs. Latch : Latch

Access

e.g., B+tree

NICTA

Duration is usually very short
Spin-waiting on contention

This works fine as long as
the duration is really short.

Concurrency control by latches

Men-Leaf
Fages

e - al L L g
rd

v

Laaf

g Pages

f Wﬁ A

T E VT F ¥ e t= = F = ¥

Table
Pages

In-memory Data Structures

Lock vs. Latch : High latch contention Oe

In high contentiomn :
Access ,
(1) lateh duration gets longer
m (2) spin-waiting incurs the
£20 cache invalidation storm on
o Concurrency cont multicores!'V
(3) This causes performance

Bitree collapse "
= | sses
._...-"'"—’f’ -.J\\—-d Fages
e - g
N L s
/":/‘-:/ . . 1' _‘\\\A . \N\\-?‘N
< < < < € f
2 P IJ;':;E5

s g P . e 5
X AL AT
:—H‘"""' ¥ e ¥ Table

Pages

In-memory Data Structures

How bad Is the performance collapse? e

NICTA
Throughput goes
MySQL (2PL) as we expected !!
3
=
=
=2
E
R=
e 1
@
=
<
-

-

1 10 100 500 . 1Socket
MPL

How bad Is the performance collapse? e

Txns/min (million)

NICTA

Performance
collapses !!!

/-l- 16 cores

=0 32 cores

MySQL (2PL)

'S

N

[—

-

1 10 100 500 | 2and4
MPL, Sockets

What causes this collapse ? (e

Latch contention

Let’s profile databases to peek a is the cause !!!
little bit deeper inside the system.
Profiling: , y
read-only queries under “SERIALIZABLE?” isolation :
on 32 cores on 4 sockets | ‘
100% -t 1dle
75% <— M Kernel
50%
Mutex

25%
0%

M Database

0 250 500
MPL

Step back: why do we use latches ?7?

* Goal : mutual exclusion (ME) between
threads

 Mutual Exclusion:

— (1) prevents data race errors

—(2) synchronizes update made inside
critical section.

 Qur Intultion Is:

— If we could achieve two objectives with an
alternative paradigm, then we can avoid
using latches.

We propose O

» a scalable lock manager with reduced
latching.

* We achieved this by:

— Read-After-Write (RAW) with memory
barriers for fast synchronization

— Staged allocation and de-allocation of locks
for a lock hash table without dangling pointer
dereferences

RAW-Inspired Implementation (Acquire) e

Lock Acquire in Growing Phase NICTA

Al: n lock =lock create();

A2: n lock->state = ACTIVE,;
A3: atomic_lock insert(n_lock);
A4: for all locks (lock) in hash bu
AS: 1f (lock 1s incompatible with
A6: n lock->state = WAIT;
AT: atomic_synchronize();
ock->state=—OBSOL
_lock->state=ACTIVE;
tomic_synchronize();
ontinue;

Al12: if (new_deadlock()==TRUE)

Al3: abort Tx;
Ald: break;
Al15: endif

A16:end for

S3

if (n_lock->state == WAIT)
mutex enter(Tx->mutex);

atomic_synchronize(); 54
if (n_lock has to wait)
Tx->state = WAIT;
os_cond_ wait(Tx->mutex);
. else
A24: n_lock-=state = ACTIVE;
A2S: atomic_synchronize(); S5
A26: endif
A27: mutex exit(Tx->mutex);
A28:end if

RAW-inspired Implementation (Release) e

Lock Release in Shrinking Phase NICTA

R1: for all locks (lockl) in Tx
R2: lockl->state = OBSOLETE; S6
R3: atomic_synchronize();

R4: for all locks (lock2) that follow lock]

RS5: mutex_enter(lock2->Tx->mutex);

R6: if (lock2->Tx->state==WAIT &&

R7: lock2 does not have to wait)

RS: lock2->Tx->state=ACTIVE;

R9: lock2->state=ACTIVE; S7

R10: atomic_synchronize();

R11: os_cond_signal(lock2->Tx);

R12: endif

R13: mutex_exit(lock2->Tx=>mutex);

R14: end for 16

R15:end for

Staged allocation and de-allocation (e

Traditional Lock Manager

The lifetime of a lock
in legacy systems

Staged allocation and de-allocation (e

NICTA

New Lock Manager

Q L atch-free 1w

[Alomicloekinseit]| |exists, but non
(bllock'v‘ng)

The lifetime of a lock
in legacy systems

The lifetimme of a lock in a new lock manager

Two important operations

« Atomic lock insert
— Unique insert order must be ensured

« Garage-collection
— No dangling pointer dereference !!!

Atomic lock insert Oe

(2) old_tail ->next = NewLock

Garage-collection Oe

NICTA

TXn Committed '

ORCDMETE ACTIVE ACTIVE
(1) Logical release by changing the state of a lock A

(2) Advance the head pointer
(3) Garbage-collect “OBSOLETE” locks

Correctness: transactions started after the head is advanced

€« » o7

The Architecture of New Lock Manager e

Transaction Table

= n u u |Committed Tx ammm Active Tx R Committed Tx ammm

. :
. :
*'Lock Release =

* tail :
e :
Physical s Temporally Persistent Locks :

De-allocation

N
Lock Hash e TR
ool of Free Locks
Table % A vy A

Ry ! (o [sumuuen Jock index

Experimental Setup

 Databases

— MySQL-5.6.10, Our system (only the lock
manager has been rewritten); also but not for
comparison: Wisconsin Shore-MT and
commercial DBMS X

 Micro-benchmark
— Read-only

SELECT sum(b_int_walue)*rand_number FROM txbench-i
WHERE b_int_key > :id and b_int_key <= :1d+5

— Update

UPDATE txbench-((i+1)%3) SET b_value-k = rand_str
WHERE b_int_key = :idl
OR b_int_key = :1d2

Experimental Setup (cont.)

 Mu

e |SO

ticore machines

Component,

Specification

Processors
Processor Sockets
Hardware Threads
Clock Speed

L1 D-Cache

L1 I-Cache

L2 Cache

L3 Cache

Memory

Network

8-Core Intel Xeon CPU E7-8837
4 Sockets

32 (No HyperThreading Support)
2.66 GHz

32 KiB (per core)

32 KiB (per core)

256 KiB (per core)

24 MiB (per socket)

128 GiB DDR3 1066 MHz
Ethernet 1 Gbps

ation : "SERIALIZABLE"

Performance Evaluation (throughput) Oe

10S 100% read-only workload NICTA
- 32core % 16core 8core ¥ 4core - 1core
Our system MySQL (2PL)

Txns/min (million)

o0

N

I~

(N

-

O, NN W

0 250 500 O 250 500
MPL NPL.

Performance Evaluation (throughput) e

100S 100% read-only workload NICTA
- 32core i 16core 8core ¥ 4core - 1core
MySQL (2PL) Our system

Txns/min (million)

Performance Evaluation (profiled) Oe
MySQL (2PL) Our system'“'"

100%
75%
50%
25%

0%

32 cores on 4 sockets with 10S

Idle mKernel Mutex M Database
100%

75, [

50%
25% |

0/
%% 250 500 0 250 500

MPL MPL
32 cores on 4 sockets with 100S

Performance Evaluation (update & hotspot) e

Txns/min (million)

NICTA
=4=Qur system ={li=MySQL (S2PL) =4=0ur system =l=MySQL (
1 R
8 o
2
S T T z 4 l
g L LU z
£
2 2
P
0, . = 0.
1 10 100 500

MPL
(a) Throughput, R/O workload

roughput, 20% updates, hotspot

(b)

Degradation is due to lock conflicts, not latch contention.

28

Conclusion o

 We identified that latch contention in the
lock manager Is a major cause for the
performance collapse problems In
multicore environments.

* We proposed a scalable lock manager
with reduced latching, and demonstrated
the performance.

Thank You § Questions?
