
A Scalable Lock Manager

for Multicores

@University of Sydney

Hyungsoo Jung Hyuck Han Alan Fekete

 NICTA Samsung Electronics University of Sydney

Gernot Heiser Heon Y. Yeom

 NICTA Seoul National University

NICTA Copyright 2011 From imagination to impact

Moore’s Law

“The number of transistors incorporated in a chip will

approximately double every 24 months.”

--Gordon Moore, Intel co-founder

NICTA Copyright 2011 From imagination to impact

Moore’s Law

2013: IBM’s System z

processor

5.7GHz and with 2.75B

transistors.

2013

NICTA Copyright 2011 From imagination to impact

MULTICORE MACHINES

Moore’s Law goes Multicores

Database Management Systems : our focus !!!!

Operating System

“Linux is not scalable,

 See [OSDI 2010, EuroSys2012, ASPLOS 2012]”

Enterprise Software Systems (Not explored completely)

But what about the software?

NICTA Copyright 2011 From imagination to impact

This research tries to solve ..

• Multi-core scalability problems of DBMS

engines (running at SERIALIZABLE

isolation) by eliminating latching overhead

in a lock manager.

– Keep overall architecture the same

– Unlike larger redesigns proposed by Johnson

et al. and Thomson et al.

• Now let’s see some background.

NICTA Copyright 2011 From imagination to impact

Latch protecting Lock table (MySQL)

Lock Table Mutex (or Latch)

NICTA Copyright 2011 From imagination to impact

Lock vs. Latch : Database Lock

Database Management Systems

Data

Users

Access via transactions

Concurrency control by locks

Duration is long (S2PL)

Sleeping when locks conflict

Lock conflicts don’t cause

the observed

performance collapse !!!!

NICTA Copyright 2011 From imagination to impact

Lock vs. Latch : Latch

Threads

Access

Concurrency control by latches

e.g., B+tree

In-memory Data Structures

Duration is usually very short

Spin-waiting on contention

This works fine as long as

the duration is really short.

NICTA Copyright 2011 From imagination to impact

Lock vs. Latch : High latch contention

More threads

Concurrency control by latches

B+tree

In-memory Data Structures

In high contention :

(1) latch duration gets longer

(2) spin-waiting incurs the

cache invalidation storm on

multicores!!!

(3) This causes performance

collapse !!!!

Access

NICTA Copyright 2011 From imagination to impact

How bad is the performance collapse?

1 Socket

Throughput goes

as we expected !!

NICTA Copyright 2011 From imagination to impact

How bad is the performance collapse?

2 and 4

Sockets

Performance

collapses !!!

NICTA Copyright 2011 From imagination to impact

What causes this collapse ?

Profiling:

 read-only queries under “SERIALIZABLE” isolation

on 32 cores on 4 sockets

Latch contention

is the cause !!!

Let’s profile databases to peek a

little bit deeper inside the system.

NICTA Copyright 2011 From imagination to impact

Step back: why do we use latches ???

• Goal : mutual exclusion (ME) between

threads

• Mutual Exclusion:

– (1) prevents data race errors

– (2) synchronizes update made inside

critical section.

• Our intuition is:

– If we could achieve two objectives with an

alternative paradigm, then we can avoid

using latches.

NICTA Copyright 2011 From imagination to impact

We propose

• a scalable lock manager with reduced

latching.

• We achieved this by:

– Read-After-Write (RAW) with memory

barriers for fast synchronization

– Staged allocation and de-allocation of locks

for a lock hash table without dangling pointer

dereferences

NICTA Copyright 2011 From imagination to impact

RAW-inspired Implementation (Acquire)

Write->

Barrier->

Read->

<-Write

<-Barrier

<-Read

<-Write

<-Barrier

<-Read

NICTA Copyright 2011 From imagination to impact

RAW-inspired Implementation (Release)

16

<-Write

<-Barrier

<-Read

<-Write

<-Barrier

<-Read

NICTA Copyright 2011 From imagination to impact

Staged allocation and de-allocation

TIME

Insert a lock into

the lock table

The lifetime of a lock

in legacy systems

Traditional Lock Manager

NICTA Copyright 2011 From imagination to impact

Staged allocation and de-allocation

TIME

Atomic lock insert

The lifetime of a lock in a new lock manager

A lock

exists, but non-

blocking

The lifetime of a lock

in legacy systems

New Lock Manager

Latch-free !!!!

NICTA Copyright 2011 From imagination to impact

Two important operations

• Atomic lock insert

– Unique insert order must be ensured

• Garage-collection

– No dangling pointer dereference !!!

NICTA Copyright 2011 From imagination to impact

Atomic lock insert

head

tail

Lock

A
Lock

B

New

Lock

(1) old_tail = atomic_fetch_and_store(&tail, NewLock)

(2) old_tail ->next = NewLock

NICTA Copyright 2011 From imagination to impact

Garage-collection

head

tail

Lock A Lock B Lock C

Txn Committed !!!

ACTIVE ACTIVE ACTIVE OBSOLETE

(1) Logical release by changing the state of a lock A

(2) Advance the head pointer

(3) Garbage-collect “OBSOLETE” locks

Correctness: transactions started after the head is advanced

can NEVER see “Lock A” since it is INVISIBLE to him.

NICTA Copyright 2011 From imagination to impact

The Architecture of New Lock Manager

NICTA Copyright 2011 From imagination to impact

Experimental Setup

• Databases

– MySQL-5.6.10, Our system (only the lock

manager has been rewritten); also but not for

comparison: Wisconsin Shore-MT and

commercial DBMS X

• Micro-benchmark

– Read-only

– Update

NICTA Copyright 2011 From imagination to impact

Experimental Setup (cont.)

• Multicore machines

• Isolation : “SERIALIZABLE”

NICTA Copyright 2011 From imagination to impact

Performance Evaluation (throughput)

25

1

0

2

3

NICTA Copyright 2011 From imagination to impact

Performance Evaluation (throughput)

Note Y-axes differ

MySQL (2PL) Our system

NICTA Copyright 2011 From imagination to impact

Performance Evaluation (profiled)

MySQL (2PL) Our system

NICTA Copyright 2011 From imagination to impact

Performance Evaluation (update & hotspot)

28

Degradation is due to lock conflicts, not latch contention.

NICTA Copyright 2011 From imagination to impact

Conclusion

• We identified that latch contention in the

lock manager is a major cause for the

performance collapse problems in

multicore environments.

• We proposed a scalable lock manager

with reduced latching, and demonstrated

the performance.

Thank You & Questions?

