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Abstract: We present a systematic refactoring of the
conventional treatment of privacy analyses, basing it on
mathematical concepts from the framework of Quantita-
tive Information Flow (QIF). The approach we suggest
brings three principal advantages: it is flexible, allow-
ing for precise quantification and comparison of privacy
risks for attacks both known and novel; it can be compu-
tationally tractable for very large, longitudinal datasets;
and its results are explainable both to politicians and
to the general public. We apply our approach to a very
large case study: the Educational Censuses of Brazil, cu-
rated by the governmental agency INEP, which comprise
over 90 attributes of approximately 50 million individu-
als released longitudinally every year since 2007. These
datasets have only very recently (2018-2021) attracted
legislation to regulate their privacy — while at the same
time continuing to maintain the openness that had been
sought in Brazilian society. INEP’s reaction to that leg-
islation was the genesis of our project with them. In our
conclusions here we share the scientific, technical, and
communication lessons we learned in the process.

Keywords: privacy, formal methods, quantitative infor-
mation flow, very large datasets, longitudinal datasets

DOI Editor to enter DOI

Received ..; revised ..; accepted ...

Mario S. Alvim: UFMG, Brazil, e-mail:
msalvim@dcc.ufmg.br

Natasha Fernandes: Macquarie University, Australia, e-
mail: natasha.fernandes@mgq.edu.au

Annabelle Mclver: Macquarie University, Australia, e-mail:
annabelle.mciver@mgq.edu.au

Carroll Morgan: UNSW and Trustworthy Systems, Aus-
tralia, e-mail: carroll. morgan@unsw.edu.au

Gabriel H. Nunes: UFMG, Brazil, e-mail:
ghn@nunesgh.com

1 Introduction

Privacy preservation in the release of governmental data
about individuals has led recently to legislation in many
contexts. Notable examples include the European Gen-
eral Data Protection Regulation (GDPR) [57], the United
States’ Confidential Information Protection and Statis-
tical Efficiency Act (CIPSEA) [29], and the Australian
review of its Privacy Act [25]. There are, however, three
principal problems concerning this kind of legislation.

One problem is that legislation usually addresses
known privacy issues (since they are what brought the
issues to the public eye), but when new ways of vio-
lating privacy are found (which can happen overnight),
the original legislation must still apply (since changing
legislation is difficult and time-consuming). A second
problem is that, since such legislation is formulated at
the level of governments or higher, the data affected can
be huge and longitudinal. And thirdly, the legislation
must be couched in terms that politicians and the pub-
lic understand, even though achieving compliance to it
is (eventually) a question of mathematics and computer
code. It is crucial, therefore, to have a link between those
two worlds, one that identifies meaningful threats while
minimizing possible waste of resources on non-threats.

In this paper we consider all three issues, ground-
ing our approach on decision- and information-theoretic
principles of Quantitative Information Flow (QIF) [4, 9,
36, 54]. QIF has been successfully applied to a variety of
privacy and security analyses, including searchable en-
cryption [31], intersection and linkage attacks against k-
anonymity [19], and differential privacy [7]. In the con-
text of the present work, we name the three challenges
introduced above flexibility, scalability, and explainabil-
ity, and now consider each one in turn. We then put our
approach to a real-world test: a thorough formal analy-
sis of privacy issues in the official Educational Censuses
of Brazil, the very large INEP ! datasets.

1 The Anisio Teixeira National Institute of Educational Studies
and Research: https://www.gov.br/INEP
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1.1 The challenge of flexibility

The first challenge is to ensure that all meaning-
ful threats are recognised, whilst minimizing resources
wasted on non-threats. And the problem here is that
current attack practices are either ad hoc or constrained
to particular scenarios (as discussed ahead in Sec. 2.2).

The impact of focussing on known scenarios is il-
lustrated by the very comprehensive ARX tool [44-47]:
it supports the analysis of re-identification risk under
El Emam’s “prosecutor”; “journalist”, and “marketer”
attack models [17, 18, 44]. ARX has been remarkably
successful in many applications — including e.g. in the
MIRACUM network in Germany with data of about 3
million patients with 70 million facts [48], and in a Nor-
wegian re-identification analysis of medical data with
over 5 million records [59]. However, ARX could not
manage INEP’s censuses: the tool is limited to datasets
of at most 231 —1 cells,? that is ~23 million records of
92 attributes each. That is smaller than INEP’s dataset
even for a single year. Furthermore, ARX provided only
a fixed selection of privacy degradation measures, all of
them related to re-identification and not e.g. support-
ing direct assessment of attribute-inference risks. But,
more importantly, ARX was not designed to support
the full expressiveness of QIF analyses, including rea-
soning about longitudinal attacks in which the adver-
sary has uncertainty about the linkage of a particular
individual’s records across datasets, and so it could not
be naturally extended to encompass attack models other
than those hard-coded in the tool already. Other popu-
lar tools face similar issues (as discussed in Sec. 8).

1.2 The challenge of scalability

Our concrete example —and the motivation for this
work— was INEP’s longitudinal collection of official
educational-statistics datasets for the whole of Brazil.
Updated yearly since 2007, those contain microdata
(i.e. for individuals) for (nearly) every student in the
country, and at all levels (from elementary to gradu-
ate schools). Once processed, the data are released to
the Internet where they are freely available. Even just
one year’s data contain about 90 attributes for approx-
imately 50 million students — around 25% of the en-
tire Brazilian population. This collection of official lon-

2 Noting this limitation, our team contacted ARX’s curators
and discussed an update to overcome it [24]. The fix has been
submitted and is now under evaluation.
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gitudinal microdata is conspicuously huge (even on the
world stage). It is used for governmental planning, espe-
cially in the allocation of the budget of the Ministry of
Education’s National Fund of Educational Resources,3
and by civil society both in Brazil and abroad in many
ways, including in demographic research [6, 13], and
policy-making and -monitoring [10, 35, 51, 52].
However, a new privacy law [28] inspired by the Eu-
ropean GDPR came into effect in Brazil in 2021, and INEP
was suddenly forced to perform a thorough exploration
of possible vulnerabilities in their datasets. Although
previous analyses had provided anecdotal examples of
re-identification risks [49], still there had been no sys-
tematic analysis of how widespread these risks actually
were in the full dataset collection. This demands the
consideration of the adversary’s confidence in the ac-
curacy of her linkage of records across the datasets in
the longitudinal collection, which directly affects also
the accuracy of her inferences and, consequently, leak-
age. This task is relatively easy if individuals’ identifiers
are persistent across datasets, but becomes significantly
more challenging otherwise. Originally, INEP intended
to consider the latter case. Thus the challenge of scale
was to analyse all the data, including its longitudinal
aspects. That is why we were contacted by INEP.

1.3 The challenge of explainability

The third challenge is that the university scientists who
discover a vulnerability * in mathematical terms must
be able to explain the threat it actually poses to those
affected, and to do that in everyday terms they un-
derstand. “There is a potential decrease of conditional
Shannon Entropy”, for example, may not convince gov-
ernment ministers that “something must be done” —
but “This inference attack might cost the data curator
8N 7 could concentrate their minds wonderfully.

Our QIF approach has two conspicuous features ad-
dressing that kind of explainability. First (Sec. 3), QIF
analyses relate directly to specific adversarial attacks:
what is observed, what it might cost (the adversary) to
attempt those observations, and what she might gain
if she succeeds. If, e.g., government data scientists are
concerned about re-identification, in QIF terms that can

3 Fundeb: https://www.fnde.gov.br/financiamento/fundeb

4 Note that the term “vulnerability” used throughout refers to
the “risk” (to the secret); this is the terminology which has been
adopted in the QIF literature [4].
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be expressed as an adversary whose intent is to identify
anyone at all. That is in contrast to threat measures
that are based on traditional information theory (e.g.
Shannon) and whose definitions were designed for quite
different purposes (i.e. efficiency of encodings).

Second (Sec. 6.1), once preliminary results are de-
livered, the government might then be able to clarify
their concerns, to make them more precise based on
what they have just learned: having seen the general
risk posed by re-identification, they might then be able
to see that the concern is not just an adversary who
could identify “anyone” but, rather, that it is a specific
minority group that is now possibly at risk. The modu-
lar way in which QIF describes threats allows computer
programs built on QIF principles to be re-run immedi-
ately with different parameters, instead of having to be
re-coded, re-tested and only then re-deployed: for QIF-
structured tools a single change in the “intent param-
eter” might be enough, and the response to the more
specific question could be very quickly given. Quick re-
sponses to new questions suggested by earlier answers
is a key factor in the explainability of anything.

1.4 Overview of the INEP case-study

Here we look briefly at the genesis of our project [5, 30].
More technical detail is given in Sec. 5.1.

In Brazil, the issues of transparency and of privacy
in the governmental release of data about individuals
are regulated through two complementary laws, further
detailed in Appendix A, but whose essence is as fol-
lows. On the one hand, a transparency law from 2011,
known as LAI [27], adopts a philosophy of “transparency
by default” and requires that information be publicly
available on the Internet: any exceptions must be prop-
erly justified. On the other hand, a new privacy law,
LGPD [28], restricts the release of data on individuals,
prescribing sanctions in the case of non-compliance.

In this context, we were contacted by INEP to search
for privacy vulnerabilities in their already published
datasets: a longitudinal collection of ~50 million records
per year, each with ~90 attributes. Their current mea-
sures had focussed only on de-identification, a known
problem, but the legislation itself did not limit the kind
of leaks that might be exploited in the future. And here
is where the issues of flexibility and scalability arise.

For example, it was known from the literature that
when non-unique attributes are released unaltered (e.g.
date of birth, city of residency, gender), then those at-
tributes can act as quasi-identifiers (QIDs), that is, in
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combination they can effect a de-anonymization [12, 39,
53, 55]. As mentioned, anecdotal evidence of such risks
had already been identified in INEP’s datasets [49], but
they were unquantified and narrow in scope.

More significantly, though, was the possibility of
other attacks not considered by INEP even anecdotally,
e.g. attribute attacks where knowing an individual’s city
of residence could be used to infer ethnicity. The legisla-
tion was broad enough to target those as well — and of
course possibly other attacks that no-one had invented
yet. INEP was thus forced to be prepared to look for
breaches they had not yet considered, and across the
longitudinal collection. That is, whatever we provided
to INEP had to be flexible enough, and longitudinally
scalable, to handle and quantify future risks too.

The issue of explainability was also formidable in
two ways. First, we had to be able to convince INEP
that they were at risk even in cases they thought they
were not. That meant putting into everyday terms —and
quickly— a quantified risk that anyone could understand
(and care about): “Do you know that with 80% proba-
bility we can from the existing data identify who your
children are, and where they go to school?” But this
had to come from a rigorous mathematical analysis.

The second part of this challenge was that what-
ever changes INEP was convinced (eventually) to make
would likely face strong resistance from the public
and lead suddenly to different, new questions — and
so, again, properly justifying and communicating any
change would have to be done carefully and quickly. As
a high-profile example, the US Census Bureau has faced
serious resistance from stakeholders when discussing
changes on the current balance between transparency
and privacy in their data-publishing methods [22, 38].

1.5 Our principal contributions

The main contributions of this paper are the items be-
low, addressing the challenges we have identified:

1. We re-factorize attacks along three orthogonal
axes: (i) the information sought by the adver-
sary (membership-inference, re-identification, or

(i)

(fixed-individuals, or collective targets); and (iii)

attribute-inference); the adversary’s target
the adversary’s access to datasets (single datasets,
or longitudinal collections). As well as comprehen-
sively covering the relevant operational scenarios
from the literature, this re-factorization identifies

some new ones (Sec. 2.2).
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2. We use the re-factorization above within a coher-
ent formal framework grounded on QIF. We de-
vise a non-traditional instantiation of the role of
the adversary’s prior knowledge and the channel in
the QIF model that allows, at the same time, for:
(i) a realistic capture of INEP’s scenario — in which
datasets were already of public knowledge even be-
fore any attack was performed; and (ii) tractable
computations of analyses (Sec. 3).

3. We illustrate the flexibility and scalability of our
approach with extensive experimental evaluations
of both re-identification and attribute-inference at-
tacks in INEP’s extremely large longitudinal collec-
tion of Educational Censuses datasets (Sec. 4 and
5). To the best of our knowledge, these analyses
are the largest and most thorough in scope ever
performed on publicly available governmental mi-
crodata, and they reveal several insights about the
privacy issues of such large releases.

Additionally, we provide a free, optimized tool of our
attacks and privacy analyses (Sec. 4.3).

Ethics considerations. All results in this pa-
per were obtained in a formal cooperation with INEP,
at their request, and fully communicated to them.
The agreement permits publication of all vulnerabili-
ties found, including all those identified in this paper.
Following Brazil’s transparency law, the datasets and
all results found are freely available to any citizen.

Plan of the paper. Sec. 2 explains our re-
factorization of privacy attack models; Sec. 3 intro-
duces the QIF framework and shows how it enables the
re-factorization; Sec. 4 describes our case study with
INEP’s datasets; Sec. 5 explains the vulnerabilities dis-
covered; Sec. 6 presents lessons learned; Sec. 7 considers
prospects; and Sec. 8 discusses further related work.

2 Rationalizing the landscape of
privacy attack models

There are currently many different approaches to the
classification of privacy attacks: according to the adver-
sary’s goals (e.g. membership, identity, or attribute dis-
closures) [20, 23, 46]; according to her target and prior
knowledge (e.g. the prosecutor, journalist, and mar-
keter models) [17, 18, 44] etc. They have been adopted
in practice by the popular ARX data-anonymization
tool [46], among others. However, their motivation
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comes from a small number of concrete scenarios, rather
than being organized systematically along indepen-
dent dimensions and, as a result, the identified attacks
might fail to cover the threat landscape. (For example,
attribute-inference attacks on longitudinal collections).
And so this section rationalizes existing attack mod-
els into a unified classification which not only covers var-
ious attack models already known, but identifies some
new ones. We begin by visiting the existing models.

2.1 An empirical classification of models

Some works focus on re-identification of individuals in a

microdata release [17, 18, 44]. Re-identification attacks

are (considered to be) of three types depending on the

adversary’s prior knowledge and target: °

— The Prosecutor attack model: the adversary tries to
re-identify a specific individual (target) whose data
is known to be in the dataset of interest.

—  The Journalist attack model: the adversary tries to
re-identify a specific individual whose data is not
necessarily known to be in the dataset of interest.

— The Marketer attack model: the adversary tries to
re-identify as many individuals as possible in the
dataset of interest.

Yet there are other works that classify according to the

type of information sought [20, 23, 46]:

— The Membership-inference model: the goal is only to
infer whether individuals’ data appear in a dataset.

—  The Re-identification model: the goal is to link data
records to the individuals to whom they refer.

—  The Attribute-inference model: the goal is to infer
the value of a sensitive attribute for individuals, re-
gardless of whether they were re-identified.

Because the scenarios above pertain to 3 main adversar-
ial features — her prior knowledge, her targets, and the
information she wishes to obtain — we are now able to
suggest a unified classification of attack models.

2.2 An orthogonal classification of models

We re-factorize attacks along three orthogonal axes:

5 These are described in [18] as “risks”, but here we use the
term “models”.
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Single-dataset (S)
Ind. (1) | Col. (C)

Longitudinal (L)
Ind. () [ Col. (C)

Memb. (M) || [IMS] CMS IML CML
Re-id. (R) [IRS] [CRS] IRL CRL
Attr. (A) IAS CAS 1AL CAL

Table 1. Re-factorization of attack models and their acronyms.

— Axis I: The information sought by the adver-
sary. We consider (M) membership-inference, (R)
re-identification, and (A) attribute-inference.

— Axis IT: The adversary’s target. We consider (1)
individual-targets, where her goal is to obtain sen-
sitive information on a specific individual; and (C)
collective-targets, where her goal is to obtain sensi-
tive information on as many individuals as possible,
no matter who they might be.

— Axis III: The adversary’s access to datasets.
We consider (S) single-dataset access, of a single
dataset corresponding to a specific point in time;
and (L) longitudinal-dataset access, where several
versions are accessible, each for a different time.

The above axes yield 3x2x2 = 12 possible combina-
tions of attack models, given acronyms in Tbhl. 1. Thus
the prosecutor model corresponds to IRS, the journal-
ist model to IMS, and the marketer model to CRS (all
bracketed in the table). But our re-factorization cov-
ers many other relevant scenarios as well, such as e.g.
attribute-inference attacks on longitudinal collections
(CAL and IAL, underlined in the table).

In the next section we show how the above adver-
sarial features are naturally represented in the threat
model provided by the QIF framework.

3 Quantitative information flow:
what it is, and how it induces
rationalization

Sec. 2 just above surveyed traditional threats to privacy,
and in particular their extensive nomenclature (pros-
ecutor, journalist, marketer, etc.). Quantitative Infor-
mation Flow (QIF) provides a mathematical model in
which those varying points of view can almost all be
seen as aspects of the same thing, thus streamlining the
conceptual approach required: we can therefore focus
on the small number of technical elements that cause
the threats, and treat them in a unified way. QIF can
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streamline the computations as well, as we see below,
and that helps with scalability.

The philosophy of QIF. The QIF framework’s fo-
cus is to capture the adversary’s knowledge, goals, and
capabilities, and from that quantify the leakage of infor-
mation caused by a corresponding optimal inference at-
tack. The framework is grounded on sound information—
and decision-theoretic principles enabling the rigorous
assessment of how much information leakage a system
allows in principle, and independently from the adver-
sary’s computational power [4]. Hence, QIF guarantees
hold no matter the particular tactic or algorithm the
adversary employs to execute the attack, as what is
measured is exactly how much sensitive information is
leaked by the best possible such tactic or algorithm.

Overview of privacy models in QIF. QIF (we
will see) separates (1) the adversary’s knowledge from
(2) the description of the “leak” she is trying to exploit,
and that leak description is again separated from (3)
her intentions and capabilities. The first (1) is modeled
as a probabilistic “prior”; the second (2) is modeled by
Bayesian reasoning to produce a “hyper-distribution”;
and the third (3) is modeled as a “gain function” that
gives what could almost be regarded as monetary values.
We introduce those in turn.

A prior (1) is a probability distribution over un-
known (but sought after) data, and it models the adver-
sary’s knowledge about that data even before any leak
occurs: how likely is it that this person is unmarried?
How likely is it that this row of the dataset describes
Warren Buffett? A gain function (3) for an adversary
gives a numerical (expected) valuation of the benefit to
her of learning that information: the gain function of an
adversary seeking a partner would be high in the first
case, but low in the second; but if she wants to raid a
bank account, it would be the opposite. Varying the gain
function is how we formalize the attacks from Tbl. 1.

A hyper-distribution (2) summarizes mathemati-
cally how an adversary uses Bayesian reasoning to ex-
ploit an information leak: we write “hyper” for short.
The specifics of the information leak are described by
a channel: for each possible secret that the adversary
wants to learn there is some probability that a particular
output (coming from the leak) is observed by the adver-
sary. Combining the channel probabilities with the prior
enables posterior reasoning using Bayes’ rule so that the
adversary is able to revise her knowledge about the po-
tential value of the secret, and better align her intent
with what she has just learned. The hyper organizes
this reasoning as a marginal probability over observa-
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id| lang. gend. | age -
language | prior
1 | English| M >30 -
English 1/4
2 | Port. M <30 Port 14
ort.
3 | German F <30 g 1/2
erman
4 | German M <30 p
— (b) Prior on language, the adver-
(a) Original dataset. sary’s knowledge before the leak.
outers » 2 1/ 1/4 0
gender, age » | Q S 8 2
VI A VI A
language V¥ = - .
English 0 1 0 O
Portuguese /20 0 0
German /20 1 0

(c) Hyper-distribution over language given gender and age, modeling the
adversary's knowledge after the leak — the outers constitute the probabili-
ties for each observation and the posterior probability distributions in each
column summarize what the adversary has learned about the language.

Table 2. Summary of the QIF analysis for leaking information
about native language from a table of microdata.

tions and, for each observation, a posterior probability
distribution over the secret values.

To be concrete for a moment, we mention that a
popular gain function is the “Bayes Vulnerability” which
rewards a correct guess of a secret’s value with 1 if the
guess is correct and 0 otherwise. It (and other functions
like it) was just what was needed by INEP to provide
the Brazilian government with hard scientific evidence
to estimate the vulnerability of re-identification such as
“There is an 80% chance that a randomly selected in-
dividual can be re-identified in the currently published
microdata.” A further benefit of this approach is that
these QIF-categorized concepts, which can be distilled
and explained in terms that INEP care about, can be
computed at scale if carefully worked out and optimized.

The components of a QIF model, with an ex-
ample. We now return to the more technical aspects of
the QIF model and how it relates to datasets, how a
secret is a value of some type X, and a secret (data)
release, which in QIF is called a channel, is a (proba-
bilistic) function from X to some set of observations ),
and how an adversary is abstracted to a (gain) function
that can be applied to the hyper, induced by a channel,
to determine the advantage accruing to the adversary
from using that channel.

In Thl. 2a we have a 4-row dataset giving for
each individual the native language spoken (English,
Portuguese, German), the gender (M, F) and the age
(<,>30). The adversary is trying to guess the native
language of the person she is about to meet (but has not
yet seen), and she assumes the person selected is equally
(i.e. uniformly) likely to be any one of the four in the

— 6

dataset. We describe her with a gain function yielding
$4 if she guesses right, and $0 if she guesses wrong. The
adversary’s prior on language (i.e. her knowledge about
the sought secret even before meeting the person) is
shown in Tbl. 2b, and clearly she will guess German
(the most likely language): an expected gain of $2.

The full procedure for converting the dataset in
Thl. 2a into a hyper as shown in Thl. 2c is given in
Appendix B and used in detail in Sec. 4.2 with a more
realistic example. We continue with the small example
here to illustrate the systematization that QIF allows.

If now our adversary sees the person before guess-
ing, the gender and age are leaked. We illustrate the QIF
approach by showing that her expected gain increases
to $3. From Fig. 2c she sees a “young” man with prob-
ability 1/2 and the posterior probabilities for language
become 1/2 for both Portuguese and German: so she will
guess one of those. If however she sees an old man, with
probability /4, she will guess (definitely) English; and if
she sees a young woman, she will guess German. (There
are no old women in the dataset.) Her expected gain is
now $4 x (1/2x1/2 4 1/ax1+ 1/4x1) = $3. Therefore, the
leak has the effect of increasing our particular adver-
sary’s expected gain from $2 to $3.

The example illustrates further orthogonal decom-
position (beyond Sec. 2.2) that QIF enables:

1. The dataset(s) and their structure are separated
from the attacks that might be mounted: they are
simply “there”. The datasets used in a particular
longitudinal attack are aggregated by some method:
if there is a persistent unique identifier for all indi-
viduals across all datasets, the aggregation can be
done with a simple left outer join keyed on that at-
tribute. (In Sec. 7 we discuss general alternatives for
when such an attribute is not available.)

2. The “selection prior” (on records, often uniform, as
above), is separated from the actual prior (induced
by the attack, here that the language spoken is twice
as likely to be German as either of the other two).

3. The selections of “what attribute(s) are sought” and
“what attributes are leaked” are separated from
the adversary’s other characteristics: they deter-
mine only what become the rows and columns of
the synthesized channel matrix.

4. The posterior inferences the leaks might enable
(revised-belief distributions over the secret) are sep-
arated from their worth to the adversary (i.e. are
captured independently in the gain function).

5. Indeed the worth to the adversary of the informa-
tion a leak delivers (gain function) is completely in-
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dependent of all other factors, in particular of the
prior, and of how many datasets were involved.

The flexiblity of the QIF framework. QIF models
are flexible by design: once a data release is modeled
as a channel, it is easy to switch between various at-
tack scenarios by changing the probability distribution
modeling the adversary’s prior knowledge, and the gain
function modeling her goals and capabilities. Moreover,
even in scenarios where the adversary’s prior knowl-
edge, goals, and/or capabilities are not fully known, the
framework provides quantified worst-case estimates of
damage based on the theory of “channel capacities” [1].
Computing leakage with a QIF model. QIF is
a way of modeling attacks, not an implemented tool in
itself. Existing general-purpose implementations of the
QIF framework make leakage computation tractable in
a range of small to medium-sized scenarios, without the
need to write new code for new attack models: it suffices
to simply change some parameters.® Alternatively, QIF
concepts could be implemented in existing anonymiza-
tion tools such as ARX. However, not all QIF features
are native to these tools, and capturing all attack mod-
els allowed by QIF in them may become a challenge (e.g.
dealing with non-uniform priors on records, or adopting
information measures not hard-coded into the tools).”
As is typical of information— and decision-theoretic
frameworks, scalability to very large scenarios is a chal-
lenge in QIF. In such cases it may be necessary to write
and optimize specialized code, as we had to do for INEP’s
scenario (see Sec. 4.3 ahead). This is in itself a contribu-
tion of this work: to show that QIF can, indeed, scale.

4 Application of QIF to a
large-scale privacy problem:
INEP’s datasets

In this section we apply the rationalization of privacy
analyses in the QIF framework, discussed in the pre-
vious sections, to the large-scale scenario of INEP’s Ed-
ucational Censuses. We start with the fundamentals of

6 An example is LibQIF': https://github.com/chatziko/libqif/
7 It has been proven that every model of inference attack (in-
cluding worst-case attacks [7]) is captured in the QIF frame-
work [2, 3]. The primary limitation of QIF is computational
tractability rather than generality.
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Auxiliary information:
Remaining datasets in longitudinal

collection and QID values for individuals
v
Attack:

Posterior
Prior Adversary knowledge:
knowledge: §> merges long. col. §> Bayes inference on
Focal dataset and crosses it merged long. col.
with QID values and QID values

4— = = = Privacy degradation - = — -

Fig. 1. General schema of an attribute-inference attack on a lon-
gitudinal collection, which generalizes all attacks in Thl. 1.

our attack models in QIF', and then provide concrete in-
stantiations on a running example. The results obtained
by the application of these models to the full extent of
INEP’s scenarios are reserved to Sec. 5.

4.1 Instantiating Q/F to INEP’s scenario

The QIF framework can be used to model the attacks
from Sec. 3. First, we can unify single-dataset and lon-
gitudinal attacks into a single model by aggregating all
available datasets along a common axis. We can also
unify both re-identification and membership attacks
with attribute-inference attacks by considering the sen-
sitive attribute to infer to be, respectively, each individ-
uals’ unique identifier or a special attribute indicating
the individual’s presence/absence in the dataset. Hence
all such attacks can be seen as instances of attribute-
inference attacks on a longitudinal collection.

Using QIF we model an adversary using a prior
m:DAX over secret values X, representing her prior knowl-
edge. (We use DX for the set of distributions over the
set X.) We assume there is a channel C:X—DY which
leaks information about secrets X via observations Y.
We can then represent an adversary’s prior and pos-
terior information about the secret (i.e. before and af-
ter an observation from C') using vulnerabilityfunctions,
which consider the adversary’s prior 7 and gain function
g modeling her capabilities and preferences. The overall
privacy degradation is then computed by comparing the
vulnerability of the secret before and after the attack.

Fig. 1 schematizes our attack models in QIF. To
accurately capture the scenario of INEP’s Educational
Censuses from Sec. 1 —thereby constructing an appro-
priate prior, channel, and vulnerability measure for the
QIF model-, we formalize assumptions A1-A4 below.

A1l: Published census data. A1l-A: There is
a longitudinal collection Lp={Di,Da,...,Dr} of I
datasets of interest. Each dataset D;, with 1<i<I, is
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defined over a (finite) attribute set A4;. A1-B: There is
an attribute of unique identification a;q common to all
datasets in Lp, and each individual of interest holds a
persistent value for this attribute across all datasets.
A2: Adversary’s prior knowledge. A2-A: In or-
der to apply Bayesian reasoning we need to attribute a
prior over secrets to the adversary. In this situation, the
adversary has access to the focal dataset D1€Lp from
which she wishes to re-identify individuals. We can use
the distribution of secrets in this dataset as her prior
knowledge —her guess— about which secret might belong
to any particular individual. We denote by X C.A; the
set of secret attributes to infer, and the prior distribu-
tion by m:DX. A2-B: The adversary assumes that each
individual of interest holds exactly one record in Dy,
and at most one record in each other dataset in £p. 8
A3: Channel representing the adversary’s ac-
quisition of auxiliary information in attack exe-
cution. A3-A: The adversary combines the remaining
datasets Dg, D3, ..
the focal dataset D; to produce an aggregated dataset

., Dy, called auziliary datasets, with

D in which the records of individuals across all datasets
are linked (see for example Tbl. 3).  A3-B: In order to
find unique mappings between named individuals and
other quasi-identifiers (QIDs) in the dataset, we assume
that the adversary mines auxiliary information derived
from e.g. other public datasets. 10 The set of QIDs is
defined Y C(U;A4;)\X (so we denote the domain of pos-
sible QID values by )). A3-C: The aggregated dataset
D can be rewritten as a channel C:X—D) where each
entry C, 4 is the ratio between the count of individuals
with QID values y€) and secret value x€X, and the
total count of individuals with secret value x€X.

A4: The attack and its privacy degradation.
A4-A: The attack consists in the adversary combining
her prior knowledge m:DX with the channel C:X—D),
and then applying Bayesian inference to produce poste-
rior (conditional) distributions on secret values for each
possible observed value of QID (i.e. a hyper giving a
probability of inferring x€ X’ for each y€), together with
the probability of y itself occurring). Combined with
the adversary’s mined knowledge from A3-B, this pos-
terior knowledge can be used to guess the secret val-

8 The enforcement of assumption A2-B is discussed in Sec. 5.1.
9 In the INEP Censuses analyzed, there exists a persistent unique
identifier for every individual across all considered datasets,
which makes the aggregation straightforward. In Sec. 7 we dis-
cuss how the QIF framework can capture more general scenarios.
10 Uniqueness is not necessary for the QIF model, but is used
here to simplify the presentation of results.
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ues corresponding to named individuals. A4-B: In a
deterministic attack, the threat is quantified consider-
ing the proportion of individuals whose secret values
can be inferred with probability 1 using the adversary’s
knowledge. A4-C: In a probabilistic attack, the threat
can be quantified using the Bayes vulnerability func-
tion [4, 54], which gives an optimal adversary’s proba-
bility of correctly inferring the secret value in one try.
A4-D: The leakage of information caused by the attack
can be quantified using either the ratio or the difference
between the adversary’s prior and posterior information
about the secret (be it probabilistic or deterministic).

4.2 Concrete example: collective-target
attribute-inference attack on a
longitudinal collection (CAL)

We now illustrate the instantiation of our general QIF
model to a concrete CAL attack. Other attacks (as in
Tbl. 1) can be modeled as special cases; Appendix C
exemplifies a CRL attack. We consider the following sce-
nario, under assumptions A1-A4 above.

Example 1 (Running example based on Tbl. 3).
Consider a longitudinal collection of two datasets
Lp ={D1,Ds}. The focal dataset, D1, is defined on the
set of attributes A1={id, age, gender, grade, disability}
and is represented in Tbl. 3a. The auziliary dataset, Do,
is defined on the set of attributes As={id, age, grade}
and is represented in Tbl. 3b. The adversary merges the
datasets in Lp, via a left outer join keyed on the per-
ststent attribute of unique identification id, to produce
the aggregated dataset D=D1x Dy in Tbl. 3c.

Recall that in a collective-target attribute-inference at-
tack on a longitudinal collection (CAL), the adversary’s
goal is to infer the value of a sensitive attribute for as
many individuals as possible in the focal dataset D1, no
matter who they might be. Assume that in our running
example the adversary wants to infer the value of the
sensitive attribute X ={disability}.

Attack execution. Before the attack the adver-
sary only has access to the focal dataset D;, and
her prior knowledge about disability is determined by
this attribute’s distribution in this dataset. Since (from
Thbl. 3a) disability is distributed uniformly (50% “no”
and 50% “yes”), the adversary’s prior is uniform. Now
consider that during the attack the adversary gains ac-
cess to the auxiliary dataset Do and merges it with Dy
to obtain the aggregated dataset D (as in Tbl. 3¢). Fur-
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id | age | gend. | grd. | dis. id | age | grd. (id,1) | (age,l) | (gend.,1) | (grd.1) | (dis.,1) | (age,2) | (grd.,2)
1 25 F A no 1 26 B 1 25 F A no 26 B
2 25 F A yes 2 26 A 2 25 F A yes 26 A
3 25 I} C yes 3 26 C 3 25 7 C yes 26 C
4 25 M B yes 4 | 26 B 4 25 M B yes 26 B
5 25 M B no 5 26 B 5 25 M B no 26 B
6 | 49 F C yes 6 50 D 6 49 F C yes 50 D
7 | 49 I ¢ yes 7 | 50 C 7 49 7 C yes 50 C
8 49 F E no 8 50 E 8 49 F E no 50 E
9 49 M D no 9 50 D 9 49 M D no 50 D
10 | 60 M D no 11 | 19 A 10 60 M D no — -

(a) Focal dataset D;. (b) Aux. dataset Ds.

(c) Aggregated dataset D=D12X D5, with each attribute tagged with its origin.

Table 3. Example of longitudinal collection of datasets Lp={D1, D2} and their aggregation D. Note that the record with id 10 is

only present in D1, so attributes (age, 2) and (grade, 2) have null values in the aggregated dataset D, whereas the record with id 11 is

only present in Do and hence is absent from D.

thermore, we assume that she obtains as auxiliary in-
formation (e.g. via other public datasets) the values of
the QIDs Y={gender, grade} for all individuals in D.
Using this auxiliary information, she performs Bayesian
reasoning and updates her knowledge about the secret
value from the prior to a set of revised conditional dis-
tributions (given the learned value of each individual’s
QIDs) on disability s.t. each of these posterior distri-
butions has its own probability of occurring — i.e. she
updates her knowledge to a hyper on the secret value.
This whole process is modeled in QIF as in Thl. 4.
First the adversary extracts from D all co-occurrences
of values for the secret and for QIDs (Tbl. 4a), and from
that she derives a joint probability distribution on these
values (Tbl. 4b). By marginalizing the joint distribu-
tion, we get the adversary’s prior 7 on the secret value
disability, and by conditioning the joint distribution on
the prior we get the channel representing the adver-
sary’s information-gathering process during the attack
(Tbl. 4c). The adversary’s posterior knowledge is then
represented by the hyper in Tbl. 4d. Finally, the overall
degradation of privacy can be computed as follows.
Deterministic degradation of privacy. Recall
that deterministic success is concerned with the propor-
tion of individuals whose value for the sensitive attribute
can be inferred with absolute certainty. In this example,
the adversary’s deterministic prior success is 0%, since
before the attack no individual’s disability status can
be inferred with certainty. After the attack, however,
the adversary’s knowledge is updated to the hyper in
Tbl. 4d. Note that in that hyper the posteriors contain-
ing only 1 and 0 values —i.e. all columns but the one la-
beled as (M,B,B)— have unique QIDs and therefore allow
the adversary to infer with probability 1 the disability
status of the corresponding individuals. The adversary’s
deterministic posterior success is the fraction of indi-

viduals whose attribute is inferred in this way, which is
exactly 80%, or 8 out of 10 (note that some posteriors
in the hyper represent more than one individual, which
is reflected by the posterior’s weight). We describe the
overall deterministic degradation of privacy additively,
as 80%—0% = 80%, meaning that the execution of the
attack increases the proportion of individuals with in-
ferrable disability status by an absolute value of 80%.

Probabilistic degradation of privacy. Recall
that probabilistic success is concerned with the chance
that randomly selected individuals can have their sen-
sitive attributes inferred, even if without certainty. In
this example, the prior vulnerability of the dataset is
50%, since before the attack the adversary’s prior on
disability is uniform and therefore 50% is the maximum
chance with which she can guess the secret value for an
individual. After executing the attack and updating her
knowledge to the hyper from Tbl. 4d, the adversary’s
posterior success is measured as the expected value of
Bayes vulnerability (which, recall, is the probability of
guessing the secret correctly in one try) taken over all
posteriors distributions. Indeed, since 7 of the posteri-
ors allow the adversary to guess the secret with prob-
ability 1 —and 6 of these posteriors occur themselves
with probability 1/10, whereas 1 occurs with probabil-
ity 1/5—, and 1 of the posteriors allows a correct guess
with probability 1/2 —and this posterior occurs itself with
probability 1/10—, the overall posterior Bayes vulnerabil-
ity is 6-1/10-1+1-1/5-14-1-1/10-1/2=90%. We describe the
overall probabilistic degradation caused by the attack
multiplicatively, as 90%/50%=1.8, meaning that the ad-
versary’s chance of inferring a randomly selected indi-
vidual’s disability status in the focal dataset increases
by a factor of 1.8 — so the completion of the CAL attacks
almost doubles the adversary’s success in inferring the
sensitive information.
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< < 3 @ UoH a A < < (S o0 S 25} a a
disability v | = = = =2 B B =2 Z disab.v | &= = B = B = =  Z
yes 0 1 2 1 1 0 0 O yes 0 110 2/10 Y10 1/10 O 0 0
no 1 0 o0 1 0 1 1 1 no /10 0 0 110 0 Y10 1/10 1/10

(a) Co-occurrence of values for secret X ={(disability, 1)} and for ob-
servable QIDs Y'={(gender, 1), (grade, 1), (grade, 2)}, derived from the
aggregated dataset D from Tbl. 3c. E.g. exactly one record has disability
status “no” and at the same time is a female with grade A in the focal
dataset D1, and grade B in the auxiliary dataset Ds.

QDs» | @ = © @ § @ a o

T < < U o T oW a A
/5 disabv | = B B = B =B = Z
1/2 yes 0 15 2/5 1/5 1/5 0 0 0

no /5 0 0 15 0 15 1/5 1/5

(c) Prior distribution 7 on the values for secret X =(disability, 1), and
the channel for the CAL attack, each derived from the joint distribu-
tion from Tbl. 4b by marginalization and conditioning, respectively. E.g.
the prior indicates that before the attack (i.e. without learning any QID
value) the adversary believes that the probability of any individual having
a disability is 1/2. On the other hand, the channel indicates that during
the attack the adversary can use the fact that if an individual without a
disability is the owner of a record, then the probability that that record
has QID values (F,A,B) is 1/5.

(b) Joint distribution of values for secret X ={(disability, 1)} and for ob-
servable QIDs Y ={(gender, 1), (grade, 1), (grade, 2)}, derived from the
co-occurrence matrix from Tbl. 4a, and assuming a uniform distribution
on the records in D. E.g. there is a probability 1/10 that an individual
does not present a disability and has QID vaues (F,A,B).

outers » 1/10 1/10 /5 1/5 1/10 1/10 1/10 1/10
QDs» | = = © =m @& w a
< << O m O 538 (=} (=}
disabv | & & B = B ® =  Z
yes 0 1 1 12 1 0 0 0
no 1 0 0 1/2 0 1 1 1

(d) Hyper-distribution (with column labels added for clarity) represent-
ing the adversary’'s knowledge after completing the CAL attack. The top
row (“outers”) gives the probability of each possible combination of QID
values being revealed, and each column gives the posterior probability dis-
tribution on secret values given that the corresponding QID values were
revealed. E.g. after the attack, the adversary has a probability 1/10 of
learning that an individual's QID values are (F, A, B), and in this case she
assigns probability 1 to the corresponding individual having no disability.

Table 4. Step-by-step derivation of prior, channel, and hyper-distribution for CAL attack on the longitudinal collection Lp from
Tbl. 3, considering secret X = {disability} and observable QIDs Y = {gender, grade}.

4.3 OQOutline of the developed software

As explained in Sec. 1.1, no existing tool met the needs
for the scope of our analyses: either they did not sup-
port all attack models we consider (especially attribute-
inference), did not support longitudinal analysis, or sim-
ply could not run analyses on data as large as INEP’s.
Hence, we implemented and optimized our own tool.

Our software is implemented on Python 3.9.10 using
numpy 1.22.2 and pandas 1.4.1 to streamline some oper-
ations. To optimize the use of hardware, we employ the
Python multiprocessing standard library to simulta-
neously analyze different sets of QIDs —up to the num-
ber of available CPU threads. Instead of relying on the
pandas built-in functions to partition a dataset based on
QIDs, we perform our own sorting of the records accord-
ing to a given set of QIDs and compute all the values
related to that attack on a single pass through the whole
dataset. The re-identification and sensitive attribute in-
ference attacks are carried out simultaneously for each
selection of QIDs and of sensitive attributes.

Under these optimizations and using 20 threads
from two Intel Xeon E5-2620 v2 processors with 96 GB
DDR3-1866 RDIMM, all 2,047 single-dataset attacks
performed on the School Census of 2018 were conducted
in 40 hours. Due to our choice of only one set of QIDs
for the longitudinal attacks, all the 4 analyses were per-
formed in less than one hour. We describe the results of
such analyses in the next section.

5 Privacy analyses of the INEP
datasets

We now summarize the main results of employing the
attack models from Sec. 4 to extensive experimental pri-
vacy analyses on INEP’s Educational Censuses. These re-
sults were critical information for INEP’s decision mak-
ing, and we discuss their implications in Sec. 6.

5.1 Overall synopsis

As mentioned, INEP’s Educational Censuses datasets
contain microdata for every student at all levels of edu-
cation in Brazil, including elementary, middle, high, pro-
fessional, and college education. The datasets have been
published yearly since 2007, and the only privacy pro-
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