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1. Motivation
Implementation defects in file systems can lead to disas-
trous data-loss. This situation has drawn the attention of re-
searchers for a long time, yet file system bugs are still very
common [4, 6, 8]. Even well established file systems like
Ext2 and Ext3, which have not been extended with new fea-
tures for years, occasionally get patched to fix implementa-
tion flaws[3].

Previous work on file system verification was mostly
based on model checking[4, 6, 8] which aims at preventing
certain classes of bugs such as buffer overflows or NULL
pointer dereferences. File systems are central part of operat-
ing systems, expectations from such critical components go
beyond the mere absence of generic programming errors.

The usual approach to obtain functional correctness guar-
antees is to prove the implementation correct using an inter-
active theorem prover. This approach enables strong func-
tional correctness guarantees encompassing most properties
checked by model checking tools. However, as opposed to
model checking, formal verification using a theorem prover
cannot be fully automated and the required interactions with
the user make the approach slow and tedious.

Previous manual formal verification attempts suffered
from the overwhelming size and complexity of file system
implementations [1, 2, 5, 7]. In order to prove difficult prop-
erties about the file system, this research had to introduce
serious limitations resulting in oversimplified and unusable
file systems.

In this paper, we propose a solution to deal with the size
and the complexity of a realistic file system implementation
in order to prove its functional correctness. As opposed to
previous research, we only consider simplifications if the
resulting file system remains usable and reasonably efficient.
Moreover the functional correctness proof only makes sense
if it can be related to the C implementation. To this end, we
will automatically generate a C file system implementation
from our provably correct specification.

2. File system verification: challenges
The ultimate goal of the project is to obtain a full functional
correctness proof of a file system implementation. One way

to define the correct behaviour of a system is to write an ab-
stract specification describing the behaviours expected from
it. Then proving that the system is correct is proving a re-
finement between the implementation and the specification,
i.e. that every behaviour exhibited by the implementation has
an equivalent behaviour in the abstract specification. Such
equivalence is proved correct mathematically using an inter-
active theorem prover.

Previous research [1, 2, 5, 7] has proved refinement be-
tween two or more high-level file system specifications but
none of these efforts have managed to relate the specifica-
tion to an implementation of a realistic file system. File sys-
tem behaviours can easily be described with high level data
structure such as sets, lists and maps. This representation en-
ables proving the correctness of the file system design while
abstracting away implementation details. However, the real
complexity arises when introducing implementation details
that specify a concrete layout for these data structures. Many
properties that are difficult to verify emerge when adding
these implementation details. For instance, describing a di-
rectory as a set of of directory entries makes it trivial to ver-
ify that all entries in a directory are unique. Specifying how
these entries are stored, how data structures are packed in
disk blocks and proving that the implementation never adds
twice the same entry is much harder.

Another important issue is error handling. Previous re-
search completely ignored errors such as allocation failures
(memory or disk block). A real file system implementa-
tion has to deal with such failures and recent research has
shown[4] that they play an important role in file system com-
plexity.

A realistic file system specification must reflect all these
implementation details. Previous research has kept these im-
plementation details away as a refinement proof for a speci-
fication that carries all these notions would require too much
effort and appears infeasible.

3. Towards a verified file system
We propose a practical methodology for complete functional
verification of a realistic file system. To overcome the com-
plexity that arises when we prove the refinement between
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Figure 1. Example of file system decomposition

two specifications, we propose to decompose a specification
by functionality.

The decomposition process proceeds as follow:

• Split a specification into multiple components.
• Specify well-defined interfaces between them.
• Specify the behaviour of each component in the decom-

position. At this stage we can prove the refinement be-
tween the combination of components and the monolithic
specification.

• Refine each component individually, by possibly repeat-
ing the decomposition process for each of them.

Beside splitting a complex problem into multiple smaller
ones, decomposing a specification also facilitates teamwork
as different verification engineers can work on independent
proofs. Another advantage is that multiple file systems that
expose common behaviours, can reuse the same components
and therefore the same proof.

On the other hand, decomposing a specification influ-
ences the structure of the implementation as a component
communicates exclusively through well-defined interfaces.
Simple interfaces confines the verification effort but may re-
strict the implementation components and impact their per-
formance. Another drawback is that modifying an interface
can potentially affect multiple proofs, a simple change at this
level may introduce several proof updates. Lastly, some be-
haviours cannot be easily decomposed, concurrency falls in
this category.

3.1 Example of decomposition
Figure 1 shows a file system specification decomposed into
3 components. Dashed borders indicate that the component
is going to be decomposed in a further refinement, whereas
solid borders denote components that contain enough imple-
mentation details to be related to the file system implemen-
tation. Components interact solely through interfaces (e.g.
Ifs).

The file system coordinator (FS Coord) implements all
file system operations by delegating the work to either
Directory or Inode. Directory manages all directory
operations such as add, remove and list directory entries in
directories.

Inode implements operations to read/write data allocated
to an inode (Iidata) and operations to create/delete inodes
(Iilayout).

By repeating the decomposition process for Directory
and Inode, we are able to split the file system functionality
into small components that require simple proof obligations
and their correctness can be proved individually. When we
decompose a specification, implementation details are omit-
ted, they only become relevant when proving refinement be-
tween the component implementation and its specification.

3.2 Expected research contributions
• First functional correctness proof of a realistic file system

implementation.
• An approach to file system verification by decomposi-

tion.
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