
Formally Proved Anti-tearing Properties
of Embedded C Code

June Andronick
Security Labs – Gemalto

june.andronick@gemalto.com

Abstract— In smart card embedded programs, some operations
must not be suddenly interrupted, because if they are, the card is
left in an inconsistent state. Since the card can be removed at any
time from the terminal, which interrupts any running program,
some instructions must be executed at each reset in order to
verify if a tearing occurred and to restore a consistent state if
necessary. In this case, the card is said to ensure the anti-tearing
property. This paper presents a method to formally prove that a C
program verifies the anti-tearing property for a given “tearing-
sensitive” operation. The back-ground methodology, presented
in [1], [2], enables to prove global properties from source code.
It is here illustrated by the proof of anti-tearing properties, which
requires an extension of the method in order to specify and verify
functions behaviour in the case of a sudden interruption of their
execution.

I. ANTI-TEARING PROPERTIES

Smart cards are small plastic cards with embedded memory
and microprocessor which aim at being a secure and safe
gate to the digital world. One of the challenges to take up
is to ensure a consistent state of the card, even if the card
is, maliciously or accidentally, removed from the terminal.
Indeed, since a smart card is supplied with power only when
inserted into a terminal, the card can suddenly be removed
from the terminal, provoking the interruption of the program
that was running on the card. Such a tearing or card tear may
leave the card in an inconsistent state, that could generate
the crash of the card or that could be maliciously used. For
instance, some operations have to be executed atomically, i.e.
either all instructions are executed or none is. When only a part
of the instructions are executed, the card is in an inconsistent
state. When some loyalty points are transformed in a credit of
money, the system is inconsistent during the time the number
of loyalty points has already been decremented and the account
has not yet been incremented (or vice-versa). When a PIN –
Personal Identification Number – is asked from the holder of a
credit card, the system is inconsistent during the time a wrong
PIN has already been given and the number of tries has not
yet been decremented (giving the opportunity to a malicious
holder to try infinitely many PINs).

If an atomic operation is interrupted, the anti-tearing prop-
erty is ensured by a “roll-back” at reset: all the instructions
executed from the beginning of the operation are cancelled.
This is usually implemented using a transaction mechanism,
which consists in considering the instructions as conditional,
i.e. effective only when all the instructions are executed.

The Java Card language (see [3]), specially designed for the
programming of smart card applications, offers support for
transactions. The correctness of this mechanism has been
studied in various related work (e.g. [4], [5], [6], [7]), that will
be detailed along this paper. In our work, we are interested in
lower levels of the card. In stead of studying embedded appli-
cation, we target the verification of the underlying operating
system, i.e. programs written in the C language.

In this context, atomic operations are not the only operations
sensitive to tearing. Operations such as the erasing of a
memory block also leave the card in an inconsistent state if
they are interrupted. If the card is suddenly removed from the
terminal during the erasing of the block, then the reading or
use of this inconsistent block may provoke fatal errors. Here
the anti-tearing property is ensured if the interruption of the
erase operation is detectable and if, at each reset, the erase is
performed again if it has been interrupted.

More generally, to each “tearing-sensitive” operation f , is
associated an abort function fab, called at each reset, which
restores a consistent state if the execution of f has been
interrupted. The notion of “consistent state” depends on the
operation f . For the erase operation, the card is consistent
if the block is erased, whereas for any atomic operation, the
card is consistent if there is no transaction ongoing (i.e. if any
ongoing transaction has been rolled-back).

Therefore, proving that a given operation f verifies the anti-
tearing property means proving that if fab is called at each
reset, then the execution of f always results in a consistent
state, even if it has been interrupted. In fact, a tearing may also
occur during the abort function. Therefore the card should
be in a consistent state when at last the abort function is
executed without being interrupted. This property is illustrated
in Figure 1, where PO represents the fact that a power off
occurred.

This paper presents a method to formally prove that the
C implementation of a given “tearing-sensitive” operation f
ensures the anti-tearing property. As illustrated in Figure 1,
this implies to formally model each function as a transition
between global states of the card. In [1], [2], we presented
a general method to build a formal transition system from
a source code written in the C language. On one hand, the
transition system is automatically extracted from a formal
specification of the code. On the other hand, a program
verification tool, called Caduceus (see [8], [9]), is used to

∀ s0. s0
�
��>f , ¬
PO

Z
ZZ~

f , PO

s′n

fab, PO fab, PO fab, ¬ POs1 - s2 - ... - sn

⇒ ∧
is consistent(s′n)

is consistent(sn)

Fig. 1. The anti-tearing property

prove that the source code verifies this formal specification,
establishing a formal link between the code and the transition
system. This paper shows how this method is useful to prove
anti-tearing properties and explain how Caduceus has been
extended in order to specify properties in the case on the
interruption of the execution of a function.

The next section explains the building of the transition
system from the source code, using Caduceus. The tool is
briefly described and the method is illustrated by a trivial
erase function. In Section III, we describe how the tool has
been extended in order to be able to specify and prove a
function behaviour in the case of a sudden interruption of its
execution. Then, in Section IV, we show how the transition
system extraction, together with the modelling of interruptions,
are used to formally model anti-tearing properties. Finally the
last section concludes the paper.

II. FORMAL TRANSITION SYSTEM FROM C SOURCE CODE

Our goal is to model any C function f as a transition
(f transition x x′) between global memory states x and x′.
Some existing work, namely [7], proposes the definition of
these memory states withing a specification language. This
work focuses on the Java Card language and explains how to
define temporal properties in the JML specification language
(see [10]). In our context, where the C language is targeted, an
analog approach would be to define the memory states within
a specification language for C programs, such as the one of
the Caduceus tool.

Our approach is different. We want to take advantage of
the work done by a verification tool, like Caduceus, which
needs to build a memory model to generate the verification
conditions. More precisely, we propose a method (described
in detail in [1], [2]) to build a transition system, formally
linked to the source code and such that the memory states are
computed by the Caduceus tool.

CADUCEUS.

Caduceus (see [8], [9]) is a verification tool at the source
code level. From an annotated C program, it generates so-
called verification conditions, whose validity implies that the
specification is verified by the source code. More precisely,
Caduceus is based on an underlying tool called Why (see [11],

[12]), whose input language is specifically designed for verifi-
cation purpose. In other words, Caduceus translates annotated
C programs into Why input language (see Figure 2). Then the
Why tool is in charge of generating the verification conditions,
which may be translated in various theorem provers (including
Coq [13]) or decision procedures.

The annotations are used to define the functional properties
of each function, in a specification language inspired by the
Java Modelling Language (JML, see [10]). They may express
functions preconditions (with the keyword requires), side-
effects (with assigns), postconditions (with ensures), global
invariants, loop invariants, etc. Moreover, in the postcondition,
the construction \result may be used for the result returned
by the function and \old for the initial state of the function.

From an annotated C program, Caduceus computes the
memory states of the program, according to its intern memory
model. Each function and each specification is then expressed
in terms of transformation of these states. For instance, a
memory variable m will be used to represent the part of the
memory where arrays of integers are allocated. Moreover, the
notions of pointer and arrays are identified in the memory
model, in a type pointer . A variable p of type pointer is
either the null pointer, or a pair (base addr(p),offset(p)) .
More precisely, the memory variable m can be seen as a
function which associates each base address corresponding to
an allocated array of size n to a piece of memory of size n
containing the integer values in the array (see Figure 3).

For example, if a program contains the declaration
int block[SIZE] , a variable m is used to represent the block
of memory where block is allocated, and an access block[i]
will be translated by (acc m (block[i])), where acc is a func-
tion enabling to manipulate the Why variables representing
memory blocks.

Usually the user only sees the verification conditions. But
when the Coq proof-assistant is used as output, the user can
also access to the formal model of the functions and the
specifications. Indeed, for each function f , a validation term
Tf of type τf is provided, where Tf is the function model and
τf is the specification model :

Tf : ∀x. P ref (x) → ∃x′. Postf (x,x′)

The variables x and x′ are the global memory states of
the program. More precisely, for each function f taking in
argument a set −→a of parameters, Caduceus computes the set

Fig. 2. Caduceus architecture

Fig. 3. Caduceus memory model

−→z of variables (global variables and variables representing
memory blocks) that are only read by the function and the set−→
t of the variables read and modified. The validation term has

thus the following form:

Tf : ∀−→a . ∀−→z . ∀−→t .
Pref (−→a ,−→z ,−→t) →
∃result. ∃

−→
t′ . Postf (result,−→a ,−→z ,−→t ,

−→
t′)

where
−→
t′ corresponds to the values after the function call and−→

t to the values at function call.

TRANSITION SYSTEM.

The idea is to use the memory states computed by Caduceus
to build the transition system. Indeed, all the hard work of
computing x and x′ in the relation (f transition x x′) can
be omitted by using the memory states computed by Caduceus.

There are two ways to define the transition: using the
model of the function or using the model of its specification.
In other words the transition is defined either by:

(f transition x x′) ≡ Pref (x) ∧ x′ = f̄(x)

where f̄ represents the model of the function body, or by:

(f transition x x′) ≡ Pref (x) ∧ Postf (x,x′).

In the first case, x′ is the resulting state defined by f, such
that the postcondition is satisfied. This solution is the most
precise, but also the heaviest since the model of the code itself
has to be considered.

Whereas in the second case, x′ is any value satisfying
the postcondition. Therefore, only properties where x′ is
universally quantified will be verified by the code. Moreover
this solution requires the validity of the verification conditions.

Indeed, if a property P is verified for any x′ which satisfies
the postcondition, then it is also verified for the one defined
by f , but only if we have proved that the code of f satisfies
the postcondition.

In our method, we will use this latter approach, using only
the model of the specification. More precisely, our method
consists in:
• specifying each function behaviour using annotations;
• proving that the source code satisfies this specification

(i.e. proving the verification condition generated by Ca-
duceus);

• define the transition by
(f transition x x′) ≡ Pref (x) ∧ Postf (x,x′)

(which can be expressed by a simple expression depend-
ing only on the validation term);

• prove global properties where the resulting state is uni-
versally quantified.

EXAMPLE.

Let us consider a trivial function which erases a block of
memory. In order to be able to detect if the erasing has been
interrupted, a status variable indicates when the erase operation
starts and when it is finished:

int block[SIZE];

#define STARTED 0
#define FINISHED 1
char erase_state;

void erase() {
int i;
erase_state=STARTED;
for (i=0;i<SIZE;i++) { block[i]=0; }
erase_state=FINISHED;

}

In order to ensure the anti-tearing property, the erase function
is associated to an abort function, called at reset, which erases
again the block if the erase operation has been interrupted:

void erase_abort() {
int i;
if (erase_state==STARTED) {
for (i=0;i<SIZE;i++) { block[i]=0; }
erase_state=FINISHED;

}
}

A simple specification of the erase function is that, at the end
of the execution, the block is erased. This is formally stated
in the specification language as follows.

/*@ ensures
@ \forall int k; 0<=k<SIZE => block[k]==0 */

Concerning the abort function, if the erase state indicates that
a tearing occurred, then the block is erased at the end of the
function. Besides, if no tearing occurred, the value of the block
is unchanged. The formal specification is the following:

/*@ ensures
@ (\old(erase_state)==STARTED =>
@ (\forall int k; 0<=k<SIZE =>
@ block[k]==0))
@ &&(\old(erase_state)==FINISHED =>
@ (\forall int k; 0<=k<SIZE =>
@ block[k]== \old(block[k]))) */

For this program, only one variable m is used, to represent the
memory block where block is allocated. The transition system
for these functions is defined by:

(erase transition st block m st′ m′) ≡
(∀ k ∈ [0, SIZE[. (acc m′ (block[k])) = 0)

(abort transition st block m st′ m′) ≡
(st = STARTED ⇒

(∀ k ∈ [0, SIZE[. (acc m′ (block[k])) = 0)) ∧
(st = FINISHED⇒

(∀ k ∈ [0, SIZE[.

(acc m′ (block[k])) = (acc m (block[k]))))

Now, if we look at the Figure 1 representing an anti-
tearing property, the definitions above corresponds to the
transition relations when no tearing occurred, i.e. the following
transitions:

s
f , ¬ PO- s′ and s

fab, ¬ PO- s′

The transitions in the case of a card tear remains to be
formalised. The idea is to extend Caduceus tool so that the
specification may include properties in case of the interruption
of the function execution. This enables to use the same
methodology to extract the transition system, i.e. the memory
states will still be computed by Caduceus. The next section
explains this extension of the tool and Section IV will illustrate
its use to model anti-tearing properties.

III. MODELLING OF CARD TEARS IN C PROGRAMS

In this section, we present how the Caduceus tool has been
extended in order to specify and verify a function behaviour
in the case of the sudden interruption of its execution.

A program interruption is a sudden modification of the
control flow, which provoke the return of the function and
that must be “propagated” in the calling functions (if a
called function is interrupted, so is the calling function). This
description corresponds exactly to the semantic of exceptions.
For this reason, an interruption can be modelled as an ex-
ception that is never caught. More precisely, an interruption
can be represented by a call to a function which may non-
deterministically raise an interruption exception. Specifying
the program behaviour in the case of an interruption thus
comes down to specifying the property to hold in the case
of the raising of the interruption exception.

This approach has been followed both in [4] and in [5], for
Java Card programs. More precisely, these papers propose an
extension of JML in order to express properties in the case
of a card tear and an extension of a Java Card verification
tool, namely LOOP (see [14]) for the first paper and Krakatoa
(see [15]) for the second, to prove that these properties are
verified at each program point.

Other studies follow a different approach, like [6], which
presents the definition of strong invariants (i.e. verified at
each program point) in a specific Java modelling logic, called
Dynamic Logic. But the properties that may be expressed in
the case of a card tear in this approach are general properties
of the whole program. They are not specific to one function,
which is necessary to define anti-tearing properties.

All the related work mentioned deal with the Java Card
language and aim at proving the correctness of its transaction
mechanism.

In our work, we follow the first approach, but for C pro-
grams. The Caduceus tool has been extended in order to model
a program interruption by a call to a function that may raise an
interruption exception. More precisely, this extension consists
in:
• defining an interruption exception;
• declaring an interruption function, whose implementation

is not needed and whose specification only indicates that
the function may raise the interruption exception;

• adding, at each program point, a call to this interruption
function;

• adding a new clause, let say ensures interrupt , to the
specification language, whose semantic is to define the
property in the case of the raising of the interruption
exception.

To be rigorous, it should also be added:
• giving an undefined value to all objects stored in volatile

memory.
This last point is not necessary for the proof of anti-tearing
properties since the consistency of the card state depends only

on persistent objects. It should however be implemented to
provide a rigorous methodology for the verification of program
correctness and it is part of our future work in this context.

The first problem to solve is that the exception mechanism
does not exist in the C language. However, it exists in Why
input language, therefore the interruption exception and the
interruption function are defined in Why input language:

exception POExc
parameter tearing_parameter: tt:unit ->
{ }
unit raises POExc
{true | POExc=>true }

In the same way, the calls to this function have been added
not in the C program but in its translation in the Why
language. Finally, Caduceus specification language has been
extended with a new clause ensures interrupt . This clause
is translated in Why language by the property in the case of
the raising of the interruption exception. In other words, the
following specification:

/*@ requires Pre
@ assigns a1, ..., am
@ ensures Post
@ ensures_interrupt Posti */

T f(t1 p1, ..., tn pn);

will be translated in Why by:

parameter f_parameter : p1:t1 -> ... -> pn:tn ->
{ Pre }
T reads ... writes ... raises POExc
{ Post and assign(...) | POExc => Posti }

The second problem to solve is to choose the granularity
of an interruption, i.e. what is meant by “at each program
point”. Indeed, a function may be interrupted between two
instructions, but also within a single instruction. For example,
an if-then-else instruction may be interrupted during the
evaluation of the conditional expression. In the same way, if
the execution of an instruction such as ((*b1| *b2++)== *b1++)
is interrupted, then the values of b1 and b2 depends on the
exact moment the interruption occurred. But this instruction
is a concise form, or syntactic sugar, for the set of instructions
((*b1| *b2)== *b1); b2++; b1++; . Therefore, a granularity at
the level of instructions would imply that two programs that
are semantically equivalent (like the two above) would not
have the same interpretation. Therefore, in some related work
such as [4], the programs are “desugared” before analysis,
i.e. all the syntactic sugar is eliminated to come down to a
minimal language.

In our approach, since the function call is added in the Why
file, the program has in fact been desugared by the translation.
Therefore, the call is added after every elementary instruction.

EXAMPLE.

Let us illustrate this extension by the example of the erase
function and its corresponding abort function. If the erase
function is interrupted, the only thing that can be said is that if

the erase status has already been changed to FINISHED when
the tearing occurred, then the erase of the block has been
completed before interruption. This is formalised as follows:

@ ensures_interrupt
@ (erase_state==FINISHED =>
@ \forall int k; 0<=k<SIZE => block[k]==0) */

Concerning the abort function, if the erase status was FINISHED
at the beginning of the function, nothing is changed even if a
tearing occur. If the status was STARTED , then the abort function
starts again an erasing, that may be interrupted. Here, what can
be said is again that if the erase status is FINISHED when the
tearing occurred, then the block is erased:

@ ensures_interrupt
@ (\old(erase_state)=STARTED &&
@ erase_state==FINISHED =>
@ (\forall int k; 0<=k<SIZE => block[k]==0))
@ &&(\old(erase_state)==FINISHED =>
@ (\forall int k; 0<=k<SIZE =>
@ block[k]== \old(block[k]))) */

Using the extension of Caduceus, we can prove that these
properties are verified at each point of the source code of the
functions.

IV. FORMAL PROOF OF ANTI-TEARING PROPERTIES

Using the transition extraction method presented in Sec-
tion II, together with the extended version of Caduceus ex-
plained in Section III, we may automatically define, for any
function f , the following modelling in terms of transitions:

(f transition −→a −→z −→t
−→
t′ result status) ≡

Pref (−→a ,−→z ,−→t) ∧
(match status with

|V al ⇒ Postf (result,−→a ,−→z ,−→t ,
−→
t′)

|Exn⇒ Postif (result,−→a ,−→z ,−→t ,
−→
t′))

This enables to represent both the “normal” transitions:

s
f , ¬ PO- s′ and s

fab, ¬ PO- s′

by (respectively)
(f transition −→a −→z −→t −→t′ result V al)
(abort transition −→a −→z −→t −→t′ result V al)

and the transitions in the case of a card tear:

s
f , PO- s′ and s

fab, PO- s′

by (respectively)
(f transition −→a −→z −→t −→t′ result Exn)

(abort transition −→a −→z −→t −→t′ result Exn)

Therefore, the anti-tearing property, represented in Figure 1,
can be formally stated and proved, using the Coq proof system.

EXAMPLE.

For instance, the transition relations for the erase function
and its corresponding abort functions are defined as follows.

Definition 1:
(erase transition block st m st′ m′ status) ≡
(match status with

|V al ⇒ (∀ k ∈ [0, SIZE[. (acc m′ (block[k])) = 0)

|Exn⇒ (st′ = FINISHED⇒
(∀ k ∈ [0, SIZE[. (acc m′ (block[k])) = 0)))

Definition 2:
(abort transition block st m st′ m′status) ≡
(match status with

|V al ⇒
(st = STARTED ⇒ (∀ k ∈ [0, SIZE[.

(acc m′ (block[k])) = 0)) ∧
(st = FINISHED⇒ (∀ k ∈ [0, SIZE[.

(acc m′ (block[k])) = (acc m (block[k]))))

|Exn⇒
(st = STARTED ∧ st′ = FINISHED⇒ (∀ k ∈ [0, SIZE[.

(acc m′ (block[k])) = 0)) ∧
(st = FINISHED ⇒ (∀ k ∈ [0, SIZE[.

(acc m′ (block[k])) = (acc m (block[k])))))

Now a sequence of interrupted calls to the abort function,
ending in a non interrupted call, can be defined by a transitive
closure, as follows:

Definition 3:
(abort seq block st m st′ m′ i) ≡
(match i with

| 0 ⇒ (abort transition block st m st′ m′ V al)

| (j + 1) ⇒
(∃ st aux. ∃ m aux.

(abort transition block st m st aux m aux Exn)

∧ (abort seq block st aux m aux st′ m′ j))

Finally, the erase operation, as described in the Figure 1, is
defined as follows:

Definition 4:
(erase op block st m st′ m′) ≡

(erase transition block st m st′ m′ V al)

∨ (∃ st aux. ∃ m aux. ∃ i.
(erase transition block st m st aux m aux Exn)

∧ (abort seq block st aux m aux st′ m′ i))

Let us note that the two previous definitions are general
definitions that may be applied to any transition relations
defining a function and its corresponding abort function.

Now, the anti-tearing property for the erase operation can be
stated as follows:

Theorem 1:
∀ block. ∀st. ∀ m. ∀ st′. ∀ m′.

(erase op block st m st′ m′)⇒
(∀ k ∈ [0, SIZE[. (acc m′ (block[k])) = 0))

Proof: Of important note is that the various definitions stated
in this paper have been defined in Coq, so is the theorem
statement. Therefore, the proof has been formally built and
mechanically checked in Coq, representing around 30 lines of
Coq script. Here we give a proof “by hand” of the theorem,
giving the global architecture of the formal Coq proof.

From the definition of erase op (Definition 4), the theorem
hypothesis implies two cases.

1) The first case is when the erase function is not
interrupted:

(erase transition block st m st′ m′ V al)

Using definition of erase transition (Definition 1), this
implies:

(∀ k ∈ [0, SIZE[. (acc m′ (block[k])) = 0)

which is the goal of the theorem.
2) The second case is when the erase function is interrupted

and a sequence of abort follows the reset:

(∃ st aux. ∃ m aux. ∃ i.
(erase transition block st m st aux m aux Exn)

∧ (abort seq block st aux m aux st′ m′ i))

Using the definition of erase transition (Definition 1),
this implies:

(∃ st aux. ∃ m aux. ∃ i.
(st aux = FINISHED⇒ (∀ k ∈ [0, SIZE[.

(acc m aux (block[k])) = 0))) (1)

∧ (abort seq block st aux m aux st′ m′ i)) (2)

From now, the proof is done by induction on i.
a) If i = 0, then the definition of abort seq

(Definition 3) and (2) imply:

(abort transition block st aux m aux st′ m′ V al)

Using the definition of abort transition

(Definition 2), this implies:

(st aux = STARTED ⇒ (∀ k ∈ [0, SIZE[.

(acc m′ (block[k])) = 0)) ∧ (3)

(st aux = FINISHED⇒ (∀ k ∈ [0, SIZE[.

(acc m′ (block[k])) =

(acc m aux (block[k])))) (4)

If st aux = STARTED, then (3) gives the theorem
goal. If st aux = FINISHED, then (4) gives:

(acc m′ (block[k])) = (acc m aux (block[k]))

and (1) gives:

(acc m aux (block[k])) = 0.

Therefore we have the theorem goal:

(acc m′ (block[k])) = 0.
b) Now, if i = (j+1), then the definition of abort seq

(Definition 3) and (2) imply:

(∃ st aux′. ∃ m aux′.

(abort transition block st aux m aux

st aux′ m aux′ Exn) (5)

∧ (abort seq block st aux′ m aux′ st′ m′ j))(6)

Besides, the induction hypothesis is the following:

∀ st aux′. ∀ m aux′

(st aux′ = FINISHED⇒ (∀ k ∈ [0, SIZE[.

(acc m aux′ (block[k])) = 0))))⇒ (H1)

(abort seq

block st aux′ m aux′ st′ m′ j)⇒ (H2)

(∀ k ∈ [0, SIZE[. (acc m′ (block[k])) = 0))

Therefore, the theorem is proved by applying the
induction hypothesis. The hypothesis (H2) is given
by (6). It only remains to prove hypothesis (H1).
Let us assume that:

st aux′ = FINISHED (H)

and prove that:

(∀ k ∈ [0, SIZE[.

(acc m aux′ (block[k])) = 0) (CCL)

Using the definition of abort transition (Defini-
tion 2), the hypothesis (5) implies:

(st aux = STARTED ∧ st aux′ = FINISHED⇒
(∀ k ∈ [0, SIZE[.

(acc m aux′ (block[k])) = 0)) ∧ (7)

(st aux = FINISHED ⇒
(∀ k ∈ [0, SIZE[.

(acc m aux′ (block[k])) =

(acc m aux (block[k])))) (8)

If st aux = STARTED, since st aux′ = FINISHED

by (H), the hypothesis (7) gives the conclusion
(CCL). If st aux = FINISHED, the hypothesis (8)
gives:

(acc m aux′ (block[k])) =

(acc m aux (block[k]))

and the hypothesis (1) gives:

(acc m aux (block[k])) = 0

Therefore we have the conclusion (CCL):

(acc m aux′ (block[k])) = 0.

CASE STUDY.

Let us note that, for readability reasons, a trivial erase
function has been given in example in this paper. However,
this method has been used to prove a module of an real
embedded operating system. In this real case study, the anti-
tearing property has been proved for a function erasing a block
of memory, but in Flash memory. It implies that the process to
know if the erase operation has been interrupted is much more
complicated. What is highlighted from this case study is that

the anti-tearing proof itself is not much more complicated that
the one presented in this paper, the hard task being to prove
that the specification given in the annotations is verified by the
source code (i.e. proving the verification conditions generated).

V. CONCLUSION

The anti-tearing property is critical in the smart card world,
in terms of both security and safety. A sudden remove of the
card from the terminal may lead to a fatal error or may be
maliciously used, if the card is not well programmed. In order
to avoid such possible problems and ensure a safe and secure
behaviour of the card, embedded programs, specially those of
an operating system, must be developed in such a way that they
may resist to card tears. This implies the programming of anti-
tearing measures. Proving the correctness of such measures
becomes crucial, but requires to define a high level model of
the source code in terms of a transition system, where the a
card tear may be modelled.

This paper presents a methodology to formally prove anti-
tearing properties of C source code embedded into smart
cards. The main advantages are the automatic extraction of the
transition system and the formal link between this transition
system and the source code of the program. This enables to
formally prove that some high level properties, such as the
anti-tearing property, are verified by the source code itself. It
has required the extension of a C program verification tool,
called Caduceus, where a card tear, i.e. a sudden interruption of
a program, has been formalised. This extension may be used,
by itself, to prove the correctness of a program in the case of a
card tear. Combined with the extraction of a transition system,
it enables to keep the advantages of the automatic extraction
of the transition system to prove global properties in the case
of a card tear, such as anti-tearing properties.

The use of this method in a concrete case study of an
embedded operating system demonstrates its feasibility and
interest and represents a promising approach for wider use
of formal methods to strengthen the confidence in embedded
programs.

Acknowledgement.
The author acknowledge Christine Paulin-Mohring and

Boutheina Chetali for their advises for this work.

REFERENCES

[1] J. Andronick, “Modélisation et Vérification Formelles de Systèmes
Embarqués dans les Cartes à Microprocesseur – Plate-Forme Java Card
et Système d’Exploitation,” Ph.D. dissertation, Université Paris-Sud,
2006.

[2] J. Andronick, B. Chetali, and C. Paulin-Mohring, “Formal Verification of
Security Properties of Smart Card Embedded Source Code,” in Formal
Methods, International Symposium of Formal Methods Europe (FM’05),
ser. LNCS, J. Fitzgerald, I. J. Hayes, and A. Tarlecki, Eds., vol. 3582.
Springer-Verlag, 2005, pp. 302–317.

[3] “Java Card,” http://java.sun.com/products/javacard/.
[4] E. Hubbers and E. Poll, “Reasoning about Card Tears and Transactions

in Java Card,” in Fundamental Approaches to Software Engineering
(FASE’04), ser. LNCS, M. Wermelinger and T. Margaria, Eds., vol. 2984.
Springer, 2004, pp. 114–128.

[5] C. Marché and N. Rousset, “Verification of Java Card Applets Behavior
with respect to Transactions and Card Tears,” in Conference on Software
Engineering and Formal Methods (SEFM’06), 2006, to appear.

[6] B. Beckert and W. Mostowski, “A Program Logic for Handling JAVA
CARD’s Transaction Mechanism,” in Fundamental Approaches to Soft-
ware Engineering (FASE’03), ser. Lecture Notes in Computer Science,
M. Pezzè, Ed., vol. 2621. Springer, 2003, pp. 246–260.

[7] M. Huisman and K. Trentelman, “Extending JML Specifications with
Temporal Logic,” in Algebraic Methodology And Software Technology
(AMAST’02), ser. LNCS, vol. 2422. Springer-Verlag, 2002, pp. 334–
348.

[8] J.-C. Filliâtre and C. Marché, “Multi-Prover Verification of C Programs,”
in Sixth International Conference on Formal Engineering Methods
(ICFEM), ser. LNCS, vol. 3308. Seattle: Springer-Verlag, 2004, pp.
15–29.

[9] J.-C. Filliâtre, C. Marché, and T. Hubert, “The Caduceus tool for the
Verification of C Programs,” http://why.lri.fr/caduceus/.

[10] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs, “JML:
Notations and Tools Supporting Detailed Design in Java,” in OOPSLA
2000 Companion. ACM, 2000, pp. 105–106.

[11] J.-C. Filliâtre, “Verification of Non-Functional Programs using Interpre-
tations in Type Theory,” Journal of Functional Programming, vol. 13,
no. 4, pp. 709–745, 2003.

[12] J.-C. Filliâtre, “The Why Verification Tool,” http://why.lri.fr/.
[13] The Coq Development Team LogiCal Project, The Coq Proof Assistant

Reference Manual, http://coq.inria.fr.
[14] “The LOOP Tool,” http://www.sos.cs.ru.nl/research/loop.
[15] C. Marché, C. Paulin-Mohring, and X. Urbain, “The Krakatoa Tool for

Java Program Verification,” 2002, http://krakatoa.lri.fr/.

