Certifying an Embedded Remote Method Invocation
Protocol

June Andronick
Gemalto, Security Lab
6 rue de la Verrerie
92190 Meudon, France

june.andronick@gemalto.com

ABSTRACT

This paper describes an approach to formally prove that
an implementation of the Java Card Remote Method In-
vocation protocol on smart cards fulfills its functional and
security specification. For that, we refine the specification
in two intermediate formal models: the functional specifica-
tion and the high level design. These two models are both
defined upon an existing complete formal model of the Java
Card virtual machine, allowing to formalize all the security
requirements. We focus on certifying the Java code portion
since the native portion has been handled in a previous work.
The correctness is showed to be preserved while composing
the native and Java codes. Our refinement scheme has been
designed to fulfill the requirements of a high-level Common
Criteria security evaluation.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Correctness proofs

Keywords

Formal verification, Security and functional certification, Em-
bedded software, Common Criteria, JCRMI

1. INTRODUCTION

Java Card Remote Method Invocation (JCRMI) is a com-
munication protocol introduced in the Java Card 2.2 plat-
form (see [12]). This protocol allows the terminal to directly
call remote methods embedded in a smart card. For ex-
ample, in a m-commerce application, a handset may call a
user-authentication function embedded in the SIM card to
check the authenticity of the buyer. In a banking applica-
tion, the terminal may call the debit/credit methods of an
e-purse embedded on the payment card. JCRMI simplifies
the interface between the terminal and the card by translat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’08 March 16-20, 2008, Fortaleza, Ceard, Brazil

Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Quang-Huy Nguyen
Gemalto, Security Lab
6 rue de la Verrerie
92190 Meudon, France

quang-huy.nguyen@gemalto.com

ing the remote method invocation into APDU! commands
in a transparent way for the terminal. In the Java Card plat-
form, the server side of JCRMI is implemented as part of
the API package javacard.framework.service. This pack-
age may contain both Java and native code (usually written
in C).

In this work, we prove that a given embedded implemen-
tation? of the JCRMI protocol verifies the functional and
security specification defined by Sun (see respectively [11]
and [13]). We follow a classical refinement approach: the
informal specification is refined, possibly through several
steps, into a model whose link with the code is as straight-
forward as possible. Since we target a formal certification
(i.e., EAL5-T levels of the Common Criteria’s ladder), all
the models and refinement proofs are formal and developed
using the Coq proof assistant (see [14]).

More precisely, the refinement of the informal specification
into its implementation is done through two intermediate
formal models (see Figure 1):

e the functional specification (FSP) model, where an
API method is defined by a precondition on the in-
put and a postcondition on the output of the method.
In this stage, we handle the native and Java methods
in the same manner.

o the high level description (HLD) model, where an API
method is specified by a function that computes the
output of the method from its input. In this level, the
Java methods are specified using a Java-like language®
embedded in Coq and following their implementation,
whereas the native methods are directly specified as
Coq functions.

Both models are based on an underlying formal model of
the Java Card Virtual Machine (JCVM).

A formal refinement proof is realized to ensure that the
HLD model respects the FSP model. A strong point of
this approach is that the correspondence between the HLD
model and the implementation code is straightforward be-
cause both of them are based on the same code. Actually,
the correspondence between the two levels is equivalent to

! Application Protocol Data Units: the standardized format
of the exchanged packets of data between cards and termi-
nals (ISO7816-4).

2The implementation that has been verified is the Axalto’s
Java Card generic platform.

3This language has been developed within the French OP-
PIDUM funded project FORMAVIE2.



paper

Informal Specification (Sun) |

Formalization
Coq v

Formal Proof
Y

Java-like language|
defined in Cogq

HLD |

A

Formalization, based on the
semantics of the Java-like language

Java Card

Implementation |

Figure 1: Refinement scheme for Java methods

the correctness of the semantics of the Java-like language.
This strengthened link is a great benefit compared to a man-
ual analysis linking the most refined model and the imple-
mentation.

In addition, our approach also contains the following ad-
vantages:

e this approach benefits from a complete semantics of

Java Card using the state machine modeling the JCVM:

the access control and the information flow control
policies of the JCRMI protocol can be fully formal-
ized as required in the security specification (see [13,
12]). For example, it is required that an array param-
eter of a remote method shall be stored in a global
array in order to avoid the reuse of this parameter
in other sessions. We cannot fully express this infor-
mation flow control without formalizing the notion of
global arrays in Java Card. Furthermore, for an in-
voked remote method to be executed in the card, its
calling context shall fulfill the same firewall condition
as that of the bytecode invokevirtual. This policy
requires the full model of the Java Card firewall (de-
scribed in section 3.1).

e this approach handles smoothly both the Java code
and the native code. The correctness of native and
Java methods can be soundly combined.

e the models issued from this approach can be naturally
used to fulfill the requirements of a high-level Com-
mon Criteria evaluation (EAL5-7). Actually, the FSP
and HLD models are designed following these require-
ments.

This paper is organized as follows. First, the JCRMI pro-
tocol and its security requirements are briefly described in
Section 2. Then the formal models involved in the refine-
ment chain, i.e., the FSP model and the HLD model, are
presented in Section 3. The refinement proof between these
models is explained in Section 4. Finally, the related work
and some concluding remarks are respectively discussed in
Sections 5 and 6.

2. JCRMI PROTOCOL

We provide in this section a brief specification of the
JCRMI protocol. A more detailed description can be found
in Sun specifications (see [12, 11, 13]).

When an applet wants to make some of its methods re-
motely accessible, it first defines a remote class C' that im-
plements the standard javacard.rmi.Remote interface. The
methods declared in C' are remotely accessible and must be
declared as throwing a RemoteException (in order to en-
capsulate any communication problem) in addition to pos-
sible user exception. An initial remote object is then cre-
ated as an instance of C. Besides, the applet creates a
new javacard.framework.service.RMIService object and
binds it to the initial remote object. The RMIService ob-
ject plays the role of the JCRMI server stub, i.e., all received
JCRMI APDU commands are forwarded to the RMIService
object, which translates them into calls to methods of the
initial object or later of other remote objects.

As described in Figure 2, a typical JCRMI working session
contains two phases. In the first phase, the terminal selects
the target applet using its AID (Applet IDentifier). This
selection is translated into a SELECT FILE command sent
to the selected applet. This command is then forwarded to
the RMIService object defined in this applet. This object
has normally been bound to an initial remote object. The
SELECT FILE command is then handled by the method
processCommand () of the RMIService object. This method
returns the reference of the initial remote object (InitRef).
Having this reference, the terminal may start the next phase,
where the remote methods are invoked.

In the second phase, the terminal sends an INVOKE com-
mand which contains the reference of the remote object
(InitRef), the identifier of the remote method (m) and the
parameters of this method (pl,...,pn). The INVOKE com-
mand is also handled by processCommand(). Concretely,
processCommand () unpacks the parameters and then sim-
ulates the execution of the bytecode invokevirtual on m.
The result of this execution is then popped out of the operand
stack, packed and sent back to the terminal. If this result is
a reference Ref to an exported * remote object in the card,
then the terminal may invoke a method m’ of this object
by a new INVOKE command. In other words, any object
whose reference has been returned to the terminal may be
used for remote invocation, as soon as it has been exported.

The second phase is finished by a new SELECT FILE
command for selecting a new applet (or by a card reset).

Security requirements. The following security features are
required on the server side of the JCRMI protocol (see [12,
13]):

1. Residual information protection: if the parameter of
a remote method is an array, then it shall be stored
in the card by a JCRE ®-owned global array. This
requirement ensures that a parameter is not reused in
another session.

2. Access control: the firewall condition needed for exe-
cuting a remote method is that of the invokevirtual
bytecode on this method.

3. Information flow control: a reference is sent back to
the terminal as the result of a remote method only

“Remote objects are automatically exported at creation, but
may be manually unexported or exported by invoking the
unexport and export methods.

®Java Card Runtime Environment



TERMINAL : SMART CARD
JCRMI RMIService Initial Remote |:| Remote
client stub pmceg‘:gl;‘:mand() T binded object (InitRef) object (Ref)
\ SELECT FILE Aid
PHASE I : get and{ pack InitRef

} InitRef

unpack anF check pl...pn

invokevirtual m p1 ... pn

Ref=m(pl,...,pn)

0]
PHASE II pop

Ref

INVOKE Ref, m’, ql...., qn’

Ref

and pack Ref

unpack an% check ql...qn"

invokevirtual m’ q1 ... qn’
Ret=m’(pl....,pn)

pop

Ret:

land pack Ret

Ret

Figure 2: A typical JCRMI session

if it points to an exported object. This requirement
avoid a non-accessible reference to be leaked out.

4. Lifetime of a remote reference: a returned remote ref-
erence is valid as long as the applet that owns it is
active in the Java Card platform.

3. FORMAL MODELS
3.1 FIVM State Machine

The Java Card virtual machine has been fully formalized
by a state machine called FIVM (for Formal Internal Vir-
tual Machine). A FIVM state is a snapshot of the card
memory and is composed of the following components: the
installed applications (Java Card packages), the frame stack,
the heap, the static fields image and the transaction state.
The FIVM transitions represent the bytecode execution by
the virtual machine in terms of modification of these com-
ponents. Both the FSP and HLD models of the JCRMI
protocol are built upon this state machine.

Security contexts and firewall control. Java Card 2.2 is a
multi-applicative platform i.e., several applets may co-exist
on the platform. In order to protect the data of an applet
from illegal access by other applets, the concept of security
context (or simply contert) is introduced. Each Java Card
package is associated to a security context. That is to say
all applets contained in this package share the same security
context. The context of the currently selected applet (there
is always such an applet during the lifetime of the JCVM)
is the currently active context. The JCVM elements (e.g.,
objects, arrays, static fields) created during the life-cycle of
an applet are said to be owned by this applet. In addition,
there are some special JCVM elements that are owned by the
JCRE such as the (temporary and permanent) entry points
and the global arrays. The security context of a JCVM
element is that of its owner.

The Java Card firewall mechanism ensures that a given
applet may only access to JCVM elements belonging to its
security context. More precisely, the access to a JCVM el-
ement is allowed if and only if the currently active context
is the owning security context of the element. There exists
some exceptions to the firewall rules (see [12]) but they are
not detailed here since there are not needed for the compre-
hension of the presented work.

Java Card-specific features. FIVM takes into account all
Java Card-specific features, in particular:

e the firewall controls (see above);

e the different types of JCVM elements: persistent ob-
jects stored in the non-volatile memory (such as EEP-
ROM or Flash), transient objects and arrays stored in
the volatile memory (such as RAM). There are two
categories of transient elements: a clear-on-deselect
(COD) element is reset if the applet owning this el-
ement is deselected, while a clear-on-reset (COR) ele-
ment is reset only if the card is reset;

e the transaction mechanism;

e the support for native codes in the API methods.

The RMIService internal state. A FIVM state contains
all the information needed by the JCVM to interpret the
bytecodes and therefore execute methods. However, some
additional information is needed during the process of the
JCRMI protocol. Indeed a RMIService object must con-
tain the reference of the remote object which it is bound
to. Besides, during the phase II of a JCRMI session, if a
reference to an exported remote object is returned, then
methods of this object may be invoked. Therefore such ref-
erences must also be stored by the RMIService object. In



the FSP model, these two pieces of information are stored
in a record service_state associated to a given RMIService
object:

service_state =
ServiceState { srvst_initial_ref : address;
srvst_returned_refs_array : address }.

whose value, at a given state of the virtual machine, may be
read or modified by two predicates:

(get_service_state sin ref srvst)
(set_service_state sin ref srvst Sout)

where ref is the reference of the RMIService object. This
structure is called the internal state of a RMIService object
and is composed of:

e the address of the initial remote object;

e a pointer to the list of the remote objects references
that have been returned to the terminal during the
current JCRMI session:

— the list is initialized to the empty list when the
RMIService object is created;

— at each new JCRMI session, the list is reset in
the phase I to a list containing only the initial
exported remote reference;

— in the phase II, all the returned exported refer-
ences, if any, are added to the list.

This list is stored in the volatile memory (through
a COD array) in order to fulfill the security require-
ment 4 described in Section 2.

3.2 Functional Specification

The FSP model of the API is a formal description of the
functional specification. Each method m is described by a
precondition Pre,, and a postcondition Posty,.

The precondition specifies the required conditions on the
input so that the method can be called. The input is made
of the initial memory state s;, of the virtual machine (i.e., a
FIVM state), the context ¢;, that is active when the method
is called (for the verification of the firewall conditions) and
the parameters @ given to the method:

(Prem cin @ Sin) (1)

The postcondition describes the output of the execution
of the method on the initial state with the given parameters.
The output is made of the resulting state sy of the virtual
machine, the resulting context cou: (a context switch may
occur during the execution) and a possible returned value r:

(POStm 7 Sin Sout Cout 7’) (2)

Let us note that the returned value may be an exception
raised during the execution of the method. More precisely,
the returned value may have one of the three following form:

A .
r £ raise exc | return None | return (Some val)
where exc is an exception raised by the method and val is

a value.

Example 1 As mentioned in Sun’s API specification [11]
(see Figure 3), the RMIService constructor initializes a new

RMIService object i.e., initializes the internal state associ-
ated to this object.

In the FSP model, the precondition Pregpyiservice de-
scribes the constraints for invoking the constructor:

(PreRMIService Cin a Sin) =
Jthis . JinitialObject . (3)
@ = initialObject :: this :: nil.

It expresses that this method has two parameters which
must have been put on the operand stack:

1. the address of the newly created RMIService object to
be initialized (this);

2. the address of the Remote object (initialObject) which
will be bound to this.

The postcondition Postguiservice describes the memory
state after the execution of the constructor and the returned
value:

(POStRMIService 7 Sin Sout Cout T) =
Jthis . FinitialObject .
@ = initialObject :: this :: nil A
IF initialObject= addr_null
THEN Sin= Sout A
r= (raise NullPointerException)
ELSE
IF 3(squa,arr).
(create_ext_ref_array cin Sin Squz aTT) (4)
THEN
let srvst :=
(ServiceState initialObject arr) in
(set_service_state Squz this srvst Sout)A
r= (return None)
ELSE sin= Sout A
r= (raise (SystemException
NO,TRANSIENT,SPACE)).

This postcondition first states that if initialObject is null,
then the method raises a NullPointerException. Other-
wise, the method allocates and initializes a new transient
array (using an intermediate state Squz) which is used to
store the list of returned remote object references. If there
is not enough memory space, the method should raise a
SystemException with the reason code NO_TRANSIENT_SPACE.
If the allocation succeeds, the created array should be ref-
erenced in the internal state of the RMIService object in
the resulting state sq.:. Moreover, this internal state should
contain the reference initialObject of the bound remote ob-
ject. Finally, the method returns no value (and raises no
exception) and its result is (return None).

Of important note is the straightforward link between the
FSP model and Sun’s informal specification. In our goal to
prove that a given implementation is correct with respect to
its specification, the FSP model represents the formalization
of the specification. The next step is to formally describe
the algorithm implemented by each method. This is done
in the HLD model, described in the next section.

3.3 High Level Design

The HLD model aims at representing the algorithms of
the methods. On one hand, the Java methods are speci-
fied as functions in a Java-like language which is defined



public RMIService(java.rmi.Remote initialObject)
throws NullPointerException

CLEAR_ON_DESELECT transient space.

Parameters:

Throws:

initialObject - the remotely accessible initial object.

Creates a new RMIService and sets the specified remote object as the initial reference for the applet. The initial reference
will be published to the client in response to the SELECT APDU command processed by this object.

The RMIService instance may create session data to manage exported remote objects for the current applet session in

NullPointerException - if the initialObject parameter is null.

Figure 3: Sun’s specification of the RMIService constructor

upon the FIVM state machine. In other words, the meth-
ods algorithms are expressed directly using this language
and following their Java Card implementation. The trans-
lation of the language constructors into FIVM concepts in
Coq is transparent in the HLD model.

On the other hand, native methods are directly repre-
sented by Coq functions. Since the correctness of native
methods has already been addressed in a previous work
(see [9]), we only present here the HLD models of the Java
methods.

The Java-like language. In order to describe the algo-
rithms of the Java methods of the API, a subset of Java has
been embedded in Coq. This means that each constructor of
this language is mapped to an action defined on the FIVM
state machine. The language syntax, defined as sugars in
Coq (i.e., notations), has been chosen to be close to the
syntax of Java.

For example, the access to an object field (o.f1d in Java)
is represented in the HLD model by the notation o@_a fld,
whose semantics describes the effect of this instruction on
the states of the virtual machine:

Notation "o ’@a_’ fld" £ (inst_getfield o fld)

where (inst_getfield o fld) is of type instruction, as any
other instruction of the Java-like language. The instruction
type is defined as a function between statements:

instruction £ statement — statement

where statement is a record containing the components needed

for the execution of an instruction. A statement stmt of
type statement is made of the currently active context c,
a possible value val returned by the instruction, the global
state s of the virtual machine (a FIVM state), and a control
variable ctr:

stmt = (Stmt c None s ctr) | (Stmt ¢ (Some val) s ctr)

The variable ctr of type control represents either the fact
that the execution has terminated normally, or that an ex-
ception has been raised, or that a fatal error has occurred:

control = Normal | Exception | Fatal

In other words, this language enables to describe a Java
code by a Java-like code with a very close syntax, but which

is actually a notation for a Coq definition of its effects on a
FIVM state.

The HLD model of the Java methods. This Java-like lan-
guage enables to describe the algorithms of each method
without having to explicitly describe how the global state of
the virtual machine is modified. Indeed, the HLD model of
a method m is given by a function f,, that may be described
by a sequence of instructions:

(fm @) & {i1; ...in;} : instruction (5)
which is in fact a notation for:
(fm @ (Stmt cin None s;, Normal))) 2 ()

(Stmt cout T€S Sout Ctr)

Invoking native functions. A Java method can invoke na-
tive functions written in C. In the HLD level, a native method
is modeled directly as a Coq function (see [9]), not using the
Java-like syntax. In other words, an interface is needed to
combine the model of the native code and the one of the
Java methods. This interface is done by the Coq function
api_call native_fct taking in argument the native function
and its parameters:

(api-call_native_fct frative E’) . instruction (7

where frqtive is a native function, therefore defined as a Coq
function:

(NormalRes (Some val) sout)
|(NormalRes None sout) (8)
|(ExcRes exc Sout)
|(FatalErrorRes)

(fnati'ue E) Cin Sin) =

Once again, the semantics of the Java-like language in terms
of FIVM concepts is transparent in the HLD model. In prac-
tice, since an instruction is a function computing a result-
ing statement from an initial statement, a call to a native




method is defined as follow:

(api-call_native_fct
frative @ (Stmt cin None s;;, Normal))) £
match (frative @ Cin Sin) With
| (NormalRes res sout) =
(Stmt cin res sour Normal)
| (ExcRes exc sout) =
(Stmt cin (Some exc) sour Exception)
| (FatalErrorRes) =
(Stmt c¢in None sou¢ Fatal)

This definition shows that the combination of the two
modeling methods (using the Java-like language and using
directly Coq) really relies on this function. Indeed the fact
that the semantics is defined in Coq enables to call directly
the native method written in Coq, while the notations en-
able to call the function in the Java-like language.

Example 2 As described in the FSP model of the RMIService

constructor (see Example 1), this method stores the refer-
ence of the initial remote object and allocates a new array
to record the registered references. In the HLD model, these
two elements are stored as instance fields of the RMIService
class. The constructor is modeled by the following function:

(fRMIService this initialObject) =

af (initialObject == _null)
_throw exp_NullPointer Exception;
this @' _ sessionReturnedReference <-
(api-call native_fct
fmakeT'ransientObjectA'rray
(MAX_REFERENCE_NUMBER_PER_INSTANCE
::CLEAR_DN_DESELECT::nil));
this@!_initial Reference <- initialObject;

}.

This function has two parameters: the RMIService ob-
ject to be initialized (this), and the initial remote object
(initialObject) to be bound to this. The algorithm mod-
eled is the following:

1. If the initial remote object is null then a
NullPointerException must be thrown (see the spec-
ification in Figure 3).

2. The sessionReturnedReference field of the current
RMIService object points to a new transient array of
references, that is allocated by calling
fma,keTra,nsientObjectArray which is the HLD model of
the native API method makeTransientObjectArray
(of the javacard.framework.Util class).

3. The initial Reference field of the current RMIService
object is assigned to the reference of the remote object
given in argument.

Of important note is the similarity between the HLD mod-
eling and the implementation in the Java Card language.
For instance, the Java Card source code of the RMIService
constructor is the following;:

public RMIService(Remote initialObject)
throws NullPointerException

{

if (initialObject==null)
throw new NullPointerException();
this.sessionReturnedReference =
JCSystem.makeTransientObjectArray(
(short)MAX_REFERENCE_NUMBER_PER_INSTANCE,
JCSystem.CLEAR_ON_DESELECT) ;
this.initialReference = initialObject;

}

Therefore the link between the HLD model and the imple-
mentation is straightforward. Actually this link is equivalent
to the correctness of the Java-like language semantics. Now,
to ensure that our implementation verifies its specification,
we prove that the HLD model is a refinement of the FSP
model.

4. CORRECTNESS OF REFINEMENT

The proof that the HLD model refines the FSP model en-
sures that the algorithms described in the HLD model verify
their specification described in the FSP model. This ensures
that the actual implementation on card of the JCRMI pro-
tocol is correct with respect to Sun informal specification
(see Figure 1). We present here the formal proof of the
correctness of the Java methods (the correctness of the na-
tive methods has been described in [9]). Then, we show that
the overall correctness can be preserved when combining the
Java code portions and the native portions.

General proof scheme. The refinement between the HLD
model and the FSP model is correct if the algorithms de-
fined in the HLD model fulfill their specifications defined
in the FSP model. In Hoare logic, a function f fulfills its
precondition Prey and postcondition Posty if:

V. Vy. y=f(z) A Pres(z) = Posts(y)

where x,y respectively represent the input and the output
of f.

Here, the preconditions and postconditions are defined in
the FSP model as described in (1) and (2), whereas the algo-
rithm of a method is given by the Java-like code as described
in (6). Therefore the refinement proof is stated as follow:

Y @V Cin. YV Sin. YV Sout. Vres. Y cour. V ctr.

(fm @ (Stmt cin None s;, Normal) )=

(Stmt cout r€S Sout ctr) A
(Prem cin @ Sin) A ©)
ctr # Fatal =

—
(POStm a4 Sin Sout Cout 7"68)

This statement means that if the method m is executed on
a state that verifies the precondition and if no fatal error
occurs, then the resulting state verifies the postcondition.

In practice, this lemma will be proved by computing the
postcondition after each instruction of the method. More
precisely, the following predicate is defined:

. — A
(correctness Pre i ‘@ Post) =

Y Cin. V Sin. V Sout. Vres. V cout. V ctr.

(¢ (Stmt c¢in None s;, Normal) )=
(Stmt cout T€S Sout ctr) A

(Pre cin @ sin) A

ctr # Fatal =

—
(Post @ Sin Sout Cout TES)



This predicate represents the notion that the instruction ¢
is correct with respect to the specification given by the pre-
condition Pre and the postcondition Post. In other words,
the predicate is true if the execution of 7 on a state verifying
Pre results in a state verifying Post, assuming that no fatal
error has occurred.

Using this predicate, one can notice that the refinement
proof amounts to proving:

YV @ . (correctness Prey, (fm @) d Postn)

From then, the refinement is proved by using a set of lem-
mas dealing with each kind of instruction of the Java-like
language. The lemma that is most used is the one decom-
posing a sequence of instructions:

Lemma correctness_sequence :
Y Pre.V Post.Vi1.Via.V P.
(correctness Pre i1 P A
(correctness P i2 Post ) =
(correctness Pre {i1;i2} Post )

We can notice that to use this lemma, we have to explicitly
give an intermediate proposition P that is the postcondition
of the first instruction. In other words, the proof is done
by computing by hand a “strongest postcondition” for each
instruction, in order to obtain the global postcondition for
the sequence of all the instructions. Then each instruction
correctness is proved using some specific predicate for this
instruction.

Combining the correctness of Java and native codes.
Let us consider a method m, that calls a native method
nat. In the HLD model, the method m is represented by a
function f,, whose body is written in the Java-like language
(see (5)). The native method is represented by a Coq func-
tion frat (see (8)) and the method call is done using the
function api_call_native_fct (see (7)). The HLD model of
the method m has the following form:

(fm @) = { ir;

(api-call_native_fct frnat Gnat)

n; }
During the refinement proof, i.e., the proof that f,, verifies

Pre,, and Post,, defined in the FSP model, we will reach a
point where we will have to prove:

(correctness Pi (api_call_native_fct fnat Gnat) Gnat P2)

for a Py and a P> computed during the proof development.
This proof step amounts to proving that for all current con-
text c¢;, and initial state s;,, if no fatal error occurs, we
have:

(Pl Cin Anat Sin) = (PQ Qnat Sin Sout Cin 7"68) (10)

where s,,: and res are respectively the resulting state and
the returned value of the execution of the native method.
At this point we have to take into consideration the fact
that native methods have already been proved correct with
respect to their specification (see [9]). In the FSP model,
native methods are modeled in the same way as the Java
methods, i.e., by a precondition Pre,q.: and a postcondition

Postpat. The native methods refinement proof thus ensures
that for all current context c;, and initial state s;y, if no
fatal error occurs, then we have:

e
(Prenat Cin Qnat sin) =

P

(Postnat Gnat Sin Sout Cin T€S)

(11)

where sou: and res are respectively the resulting state and
value of the execution of the native method.

Therefore, the correctness step (10) will be proved using
this refinement proof (11) together with two intermediate
lemmas (see Figure 4):

e one lemma stating that the property P; assumed in the
proof development is stronger than the precondition
Pre,q: of the native function:

(Pl Cin Anat Sin) = (Prenu,t Cin QAnat Szn) (12)

e one lemma stating that the property P> needed by the
proof development is weaker than the postcondition
Postna: of the native function:

—
(POStnat Anat Sin Sout Cin ’I"68) =
P:
(P2 Gnat Sin Sout Cin T€S)

(13)

Benefits and errors found. In this paper, the whole cer-
tification process is illustrated by a single method, the con-
structor RMIService, chosen for a better understanding. The
verification has actually been done for each method of the
JCRMI protocol, in particular the method ProcessCommand.

A major benefit of the approach is the direct link between
the implementation and its formalization. This enables to
prove that the source code is correct with respect to its
functional and security specification, or to find and fix errors
if any.

Indeed, our work highlighted some implementation errors,
such as potential buffer overflow or disclosure of unexported
object reference, and enabled to fix them. For confidential-
ity reasons, the errors may not be explained here. What
can be said is that they could be found thanks to the use
of the Java-like language that enables to copy exactly the
embedded source code in the HLD model.

5. RELATED WORK

In previous attempts [7], part of the Sun reference imple-
mentation of Java Card APT has been specified (in JML) and
verified by automatic and interactive provers (Simplify [4],
PVS [10]) using LOOP [3]. However, that work was done in
a previous version of Java Card which does not include the
JCRMI protocol.

Java Card applets can also be specified and verified us-
ing Krakatoa [5] (and a theorem prover like Coq [14]) as
described in [6]. However, Krakatoa does not have a com-
plete Java Card semantics. In particular, the different ob-
ject lifetimes (transient objects, JCRE-owned entry points
and global arrays) as well as the firewall control are not in-
cluded. In other words, some JCRMI security requirements
described in Section 2 may not be correctly specified. Fur-
thermore, the native code is not considered in Krakatoa.
Similar work has also been done to specify Java Card applet
in JML and then, generate proof obligations using JACK [1].

In KeY framework [2], the JCVM is modeled in a domain-
specific logic (Dynamic Logic). One can then specify the



(12) (11)

(Pl Cin Qnat Sin) = (Prenat Cin Anat Sin) =

—
(P2 Gnat Sin Sout Cin T€S) =

(13)

—
(PoStnat Gnat Sin Sout Cin T€S)

Figure 4: Refinement proof scheme for API native calls (proof of (10))

(functional) properties to be ensured on a Java Card code
in the same logic following the JML style. However, the KeY
model has not covered the firewall control yet and it is not
well defined how the security requirements on the code are
handled in this framework. In a recent work [8], the author
has verified a part of the Java Card 2.2 API in KeY. Still,
the JCRMI protocol is not considered in that work.

Comparing to these approaches, our certification requires
more workload because we refine the JCRMI protocol from
the informal specification to the implementation by different
models and then, prove the correctness of this refinement.
However, thanks to a complete model of the JCVM, this
approach allows us to target all the functional and security
requirements of the protocol. Furthermore, the direct link
with the implementation, thanks to the Java-like language,
enables to verify the source code itself. Besides, the Java
and native codes are smoothly combined in this work while
they need usually to be handled by two separated tools in
the literature (except for KeY which provides an interface
between Java and native codes). Finally, the refinement
scheme described in this paper can be used for a high-level
Common Criteria evaluation (EAL5-7) that requires the use
of formal models and proofs.

6. CONCLUDING REMARKS

In this paper, we have described a refinement method
to formally certify a smart card embedded software, the
JCRMI protocol. Although the size of the source code is
not huge (300 lines of Java and 800 lines of C), the software
is actually more complex because these codes use several
specific features of the Java Card platform. The aim of this
work is twofold: (1) ensure that the specified requirements
are fulfilled and (2) detect the implementation errors.

On the first point, the two intermediate models FSP and
HLD have been built following respectively the informal
specification and the implementation of the software. The
correspondence between these two levels has been then for-
mally proved in Coq. Thanks to the use of a complete model
of the JCVM, we managed to model and prove not only the
functional but also the security requirements on the soft-
ware.

On the second point, this work reveals some errors in the
implementation, that have been fixed since then, as men-
tioned at the end of Section 4.

The presented work is part of a high-level Common Crite-
ria evaluation of the Java Card platform where securing RMI
mechanism is one of the security objectives to be fulfilled.
The refinement framework can be however used to deal with
the other API classes of the platform. We are also investi-
gating the application of this framework to the verification
of Java Card applets. Expressiveness is an advantage of this
framework because any Java Card-related security require-
ment can be expressed on the model and checked against
any Java/C mixed implementation. However, the correct-
ness proof is time-consuming because we need to proceed

instruction by instruction. A more automatic proof tool is
needed to handle the commercial-size Java Card applets.
Another direction is to focus on the security kernel of the
applet because for the rest we are only interested in its func-
tional properties that can be handled by the tools like KeY,
JACK or Krakatoa.

7. REFERENCES

[1] G. Barthe, L. Burdy, J. Charles, B. Grégoire,

M. Huisman, J.-L. Lanet, M. Pavlova, and A. Requet.
JACK: a tool for validation of security and behaviour
of Java applications. In FMCO’06, 2006.

[2] B. Beckert, R. Hahnle, and P. H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY
Approach. LNCS 4334. Springer-Verlag, 2007.

[3] Loop. http://www.sos.cs.ru.nl/research/loop.

[4] The Simplify decision procedure (part of ESC/Java2).
http://secure.ucd.ie/products/opensource/ESCJava2/.

[5] C. Marché, C. Paulin-Mohring, and X. Urbain. The
Krakatoa Tool for Java Program Verification, 2002.
http://krakatoa.lri.fr/.

[6] C. Marché and N. Rousset. Verification of Java Card
Applets Behavior with respect to Transactions and
Card Tears. In Dang Van Hung and Paritosh Pandya,
editors, SEFM’06. IEEE Comp. Soc. Press, 2006.

[7] H. Meijer and E. Poll. Towards a Full Specification of
the Java Card APL. In I. Attali and T. Jensen, editors,
Smart Card Programming and Security, volume 2140
of LNCS, pages 165—178. Springer-Verlag, 2001.

[8] W. Mostowski. Fully verified Java Card API reference
implementation. In Bernhard Beckert, editor,
Verify’07, volume 259 of CEUR WS, 2007.

[9] Q-H. Nguyen and B. Chetali. Certifying Native Java
Card API by Formal Refinement. In
J. Domingo-Ferrer, J. Posegga, and D. Schreckling,
editors, CARDIS’06, volume 3928 of LNCS, pages
313-328. Springer-Verlag, 2006.

[10] The PVS system. http://pvs.csl.sri.com/.

[11] Sun Microsystems. Java Card 2.2 Application
Programming Interface, 2002.
http://www. javasoft.com/products/javacard.

[12] Sun Microsystems. Java Card 2.2 Runtime
Environment Specification, 2002.
http://www. javasoft.com/products/javacard.

[13] Sun Microsystems. Java Card System Protection
Profile Collection - Version 1.1, 2003.
http://java.sun.com/products/javacard/pp.html.

[14] The Coq Development Team. The Cogq Proof
Assistant. http://coq.inria.fr/.



