
A Memory Allocation Model For An Embedded Microkernel

Dhammika Elkaduwe Philip Derrin Kevin Elphinstone

National ICT Australia∗and University of New South Wales
Sydney, Australia

firstname.lastname@nicta.com.au

Abstract

High-end embedded systems featuring millions of lines
of code, with varying degrees of assurance, are becom-
ing commonplace. These devices are typically expected
to meet diverse application requirements within tight re-
source budgets. Their growing complexity makes it in-
creasingly difficult to ensure that they are secure and
robust.

One approach is to provide strong guarantees of iso-
lation between components — thereby ensuring that the
effects of any misbehaviour are confined to the misbe-
having component. This paper focuses on an aspect of
the system’s behaviour that is critical to any such guar-
antee: management of physical memory resources.

In this paper, we present a secure physical memory
management model that gives hard guarantees on phys-
ical memory consumption. The model dictates the in-
kernel mechanisms for allocation, however the alloca-
tion policy is implemented outside the kernel. We also
argue that exporting allocation to user-level provides
the flexibility necessary to implement the diverse re-
source management policies needed in embedded sys-
tems, while retaining the high-assurance properties of a
formally verified kernel.

1 Introduction

Embedded systems are becoming increasingly complex.
High-end devices, such as mobile phones, PDAs, enter-
tainment devices, and set-top boxes, feature millions of
lines of code with varying degrees of assurance of cor-
rectness. These devices are no longer closed systems
under control of the manufacturer. They feature third-
party components, applications, and even whole operat-
ing systems (such as Linux) that can be installed by the
manufacturer, suppliers and even the end user. When
constructing such devices using traditional unprotected
real-time executives, it becomes impossible for embed-
ded system vendors to provide guarantees about the be-
haviour of the device. Failure or malicious behaviour

∗National ICT Australia is funded by the Australian Government’s
Department of Communications, Information Technology, and the
Arts and the Australian Research Council through Backing Australia’s
Ability and the ICT Research Centre of Excellence programs.

of a single software component on the device will affect
the whole device.

One approach to improving the security and robust-
ness of components on a device is to provide strong iso-
lation guarantees between components — misbehaviour
of a component is confined within the component itself.
There are many approaches to isolation guarantees, such
as classical processes and virtual memory [Fot61], iso-
lation kernels [WSG02], and virtual machines [Wal02],
which all provide varying levels of isolation guarantees
at different granularity. Ideally, when required, isola-
tion should be at the level ofpartitioning as defined
by [Rus99]:

A partitioned system should provide fault
containment equivalent to an idealised sys-
tem in which each partition is allocated an in-
dependent processor and associated peripher-
als and all inter-partition communications are
carried on dedicated lines.

This paper focuses on one aspect of providing iso-
lation guarantees closer to that of partitioning — the
management of physical memory on the device. Specif-
ically, the mechanisms used to directly and indirectly
control access to physical memory while providing ser-
vices to software components on the system. Note that
we not arguing that partitioning is the most appropriate
policy for embedded systems. Our goal is a set of kernel
mechanisms that enable system services, where those
mechanisms respect and can enforce a domain-specific
system allocation policy, where that policy may include
partitioning of memory at one extreme, and first-come
first-served at the other.

The problem is more complex than simply control-
ling the size of virtual memory, or resident set size of an
application. Services such as pages or threads not only
require allocation of memory to directly support the ser-
vice (a frame or thread control block), service provision
also results in the allocation of kernel meta-data to im-
plement the service (such as page tables) or provide the
bookkeeping required to reclaim the storage on release.
Kernel meta-data must taken into account in any system
attempting to provide memory allocation guarantees.

We can summarise our approach to tackling the meta-
data issue as simply eliminate all meta-data in the ker-



nel. We achieve this by the following three techniques:
careful avoidance of mechanisms requiring bookkeep-
ing, pre-allocation of bookkeeping required within ex-
plicitly allocated kernel objects, and the promotion of
meta-data into first class kernel objects. The approach
reduces the problem of memory allocation to kernel ob-
ject allocation. We also present a model for the distri-
bution of physical memory, and the creation of kernel
objects within that memory.

Kernel services and complexity have a direct con-
sequence on our ability to successfully implement our
approach. Thus our overall system design is that of
a microkernel-based system, where the microkernel
aims to provide a minimal, efficient, flexible kernel
with the strong guarantees needed for the foundation
of the system. Higher-level system services are pro-
vided by user-level servers, running outside the kernel,
in their own protection domains. Protection domains
and their associated low-level resources are strictly man-
aged by the microkernel. Normal applications access
system services by interacting with the servers via inter-
process communication. Such a system is not only more
amenable to applying our approach to the core kernel,
the overall system has the potential to be more robust,
as faults are isolated within servers and applications; it
is are also flexible and extensible, allowing user-level
servers to be added, removed or replaced.

In the remainder of the paper, we discuss the require-
ments and issues surrounding the construction of com-
plex embedded systems that consequently motivated our
approach and influenced its design (Section 2). In Sec-
tion 3, we then overview our microkernelseL4(secure
embedded L4), and describe in detail its in-kernel mem-
ory allocation model. Finally, Section 4 discusses re-
lated work, and conclusions and future work are in Sec-
tion 5.

2 Memory Allocation

Memory allocation to support kernel services and as-
sociated meta-data can have a direct or indirect effect
on the security, real-time properties, efficiency, and as-
surance of the overall system. The following sections
examine describe issues and requirements of a memory
allocation mechanism in each of these areas.

2.1 Memory Utilisation

Physical memory is a limited and exhaustible resource.
Any limited resource requires precisely controlled allo-
cation to avoid one task’s requests for authorised ser-
vices from directly or indirectly denying service to an-
other task. Simple per-task quota-based schemes or
static preallocation would suffice in a statically struc-
tured system. However, any dynamic variation in sys-
tem structure or resource requirements leads to under-
utilisation, due to the overly conservative commitment

of resources required to ensure all authorised service re-
quests are satisfied during peak demand.

An illustrative example of this utilisation issue in
practice are virtual machine monitors. Guest operat-
ing systems are an ideal candidate for a fixed preallo-
cated amount of physical memory (in fact guest OSes
usually assume it). However, significantly higher effi-
ciency can be achieved if memory can be safely reas-
signed to where it can be utilised [Wal02]. Memory al-
location mechanisms must support dynamic allocation
and re-assignment of memory.

2.2 Security

To avoid the denial-of-service attack described in the
previous section, the memory allocation mechanism
must be able to enforce a desired physical memory al-
location policy. Additionally, the mechanism must not
have by-design overt storage channels that can be used
to violate confinement guarantees.

2.3 Real-time

Real-time behaviour is an important issue in the con-
text of embedded systems. The main issue that arises
with memory allocation in the real-time context is pre-
dictability of execution times of kernel operations. Pre-
dictable execution times are a prerequisite for schedu-
lability analysis. Memory allocation affects predictabil-
ity when physical memory caching is used to avoid ker-
nel memory starvation, be it implemented with virtual
memory or managed explicitly. Several operating sys-
tems use kernel physical memory as a cache of data
structures stored at user-level or on disk [SSF99,CD94],
and thus can always evict cache content to service new
requests to avoid physical memory-based denial of ser-
vice. However, such a strategy is not readily amenable
to execution time analysis, and if it was, would result in
too pessimistic an estimate to be useful. A memory allo-
cation mechanism must be able to guarantee allocations
to real-time components.

The structure of bookkeeping in a kernel managing
allocation also affects predictability of interrupt or event
latencies. Traversal of lists or trees can result in varying
or unreasonably long executing times for kernel opera-
tions traversing the list. Ideally, all system calls would
complete in constant time, or at least be preemptable to
minimise interrupt latency.

CPU cache colouring techniques for improving pre-
dictable cache behaviour are also dependent on control
of the memory allocation of the data structures requiring
colouring [LHH97], including the kernel’s internal data
structures.

2.4 No Single Policy

Given the wide variety of potential application domains,
we expect no single kernel memory allocation policy



to suffice in all situations. At one extreme, we must
support simple static systems where the main require-
ment is spatial partitioning of components of the sys-
tem [Rus99]. For kernel memory allocation, this im-
plies a guaranteed fixed allocation of physical memory
(including meta-data) to each partition that cannot be
interfered with by any activities of any partition. In the
other extreme, we expect to support best-effort embed-
ded operating systems where physical memory manage-
ment is dynamic, on-demand, and uncritical.

A realistic example of the latter extreme is in effi-
ciently supporting para-virtualised legacy operating sys-
tems on the microkernel [BDF+03]. The legacy OS
is in the best position to determine the allocation of
page tables, pages, frames, and thread control blocks.
This scenario is just a specialised case of the more gen-
eral argument that application self-management of re-
sources can lead to more efficient use of those resources
[Han99,EGK95].

In addition to supporting a specific policy suitable
for a particular application domain, we expect the ker-
nel to potentially support several kernel physical mem-
ory allocation policies concurrently. A realistic exam-
ple is a system providing one or more critical partitions,
while at the same time, efficiently supporting an best-
effort legacy operating system. Ideally, the kernel mem-
ory allocation mechanism will be different depending on
whether the kernel is servicing a request from a critical
application, legacy operating system, or an application
hosted by that legacy operating system.

2.5 Assurance

Ideally, for a truly trustworthy embedded kernel, a high
degree of assurance is required of any model and imple-
mentation of the kernel. Assurance here meaning proof
of having the desired properties given a model of the
kernel, and a proof that the implementation behaves as
the model specifies. Without a high degree of assur-
ance of this basic low-level system functionality, it is
impossible to provide a high degree of assurance for the
higher-level software stack built upon the kernel. The-
orem proving tools have grown powerful enough, and
microkernels are small enough, for such a degree of as-
surance to be feasible [TKH05].

Our desire (and efforts [DEK+06]) to formally verify
our embedded kernel introduces another requirement to
our design. In order to avoid invalidating any successful
verification effort, any model addressing kernel memory
allocation must ideally be fixed.

However, we have argued that in the embedded do-
main the operating system needs to support a wide range
of memory allocation policies. By “operating system”
we mean the microkernel and user-level servers that run
outside the kernel and provide services to application
programs. For this to be feasible, the microkernel it-
self must support diverse allocation policies over its in-
kernel physical memory.

These potentially conflicting requirements lead to the
conclusion that any kernel model that expects toremain
verified must minimise the allocation policy in the ker-
nel, and maximise the control higher-level software has
over the management of physical memory in the ker-
nel. If such a model exists then we can enforce diverse
allocation policies over kernel memory by modifying
higher-level software, rather than the kernel.

3 The seL4 Design

To meet the requirements discussed in Section 2,
the seL4 project proposes a design inspired by early
hardware-based capability machines (such as CAP
[NW77]), where capabilities control access to physi-
cal memory; the KeyKOS and EROS systems [Har85,
SSF99], with their controls on dissemination of capabil-
ities; and the L4 microkernel [Lie95], where the seman-
tics of virtual memory objects are implemented outside
of the kernel.

In this section, we provide a brief overview of the
seL4 microkernel, and a description of the mechanisms
it provides for in-kernel memory management (see Sec-
tion 3.1); then, in Section 3.2 we will discuss the bene-
fits of our scheme.

3.1 Overview

Similar to its predecessor, the L4 microkernel [Lie95],
seL4 provides three basic abstractions: threads, address
spaces and inter-process communication. In addition,
seL4 introduces a novel abstraction calleduntyped mem-
ory — an abstraction of a region of physical memory
which we will later describe precisely.

These abstractions are provided via named, first-class
kernel objects. Each kernel object implements a partic-
ular abstraction and supports one or more operations re-
lated to the abstraction it provides. Authorised users can
obtain kernel services by invoking operations on kernel
objects.

Authority over objects are conferred via capabili-
ties [DVH66]. Capabilities are tamper-proof: they are
stored inside kernel objects calledCNodes— arrays of
capabilities, which may be inspected and modified only
via invocation of the CNode object itself — and there-
fore are guarded against user tampering. CNodes are
similar to KeyKOSnodes, except that they vary in size
in powers of 2, and are composed similar toguarded
page tables[Lie94], to form a local capability address
space called theCSpace. Capabilities are immutable;
while user-level programs may specify some of the ca-
pability’s properties at the time it is created, those prop-
erties may only be changed by removing the capability
and replacing it with another.

System calls are invocations of capabilities. Users
specify a capability as an index into a local capability
address space, that would translate the given index to



a capability. Tasks have no intrinsic authority beyond
what they possess as capabilities.

3.1.1 Memory Allocation Model

At boot time, seL4 preallocates all the memory required
for the kernel to run, including code, data, stack sec-
tions (seL4 is a single kernel-stack operating system).
The remainder of the memory is given to the first task in
the form of capabilities tountyped memory(UM), and
some additional capabilities to kernel objects that were
required to bootstrap the task. UM is restricted in size
to powers of 2, and is used as the basis for creating all
other objects in the system.

A capability to UM (a parent) can be refined into ca-
pabilities to smaller power-of-2 sized UM (children) via
theretypemethod of UM. Retype has the following two
restrictions:

1. the refined child capabilities must refer to non-
overlapping UM objects of size less than or equal
to the original, and

2. the parent capability must have no previously re-
fined child capability derived from it.

The first restriction is obviously required; the need for
the second restriction will be explained later.

In addition to smaller subdivided UM, the retype op-
eration can also retype UM into a kernel object of a spe-
cific type. The seL4 API defines seven types of kernel
objects, associated with the abstractions it provides. All
kernel primitives (system calls) are invocations of these
objects.

TCB (Thread Control Block) objects implement
threads, which are seL4’s basic unit of execution.

Endpoint objects implement inter-process communi-
cation(IPC). Users send and receive messages by
invoking capabilities to these objects. Like L4 IPC,
this operation is synchronous and unbuffered.

Asynchronous Endpoint objects are used to imple-
ment asynchronous IPC. Rather than having a
queue of threads waiting to send, they contain a
buffer which is used to store the content of the mes-
sage after a sender has resumed execution.

CNode objects are arrays of2n (wheren > 0) capa-
bilities. They constitute the CSpace — constructed
as a tree of CNodes. Invoking a CNode allows a
user-level server to manipulate a region of CSpace
mapped by the tree of which that CNode is the root.

VNode objects are used to implement the data address
space, or the VSpace. The exact structure of these
objects would depend on the architecture. How-
ever, operations on these objects are essentially a
subset of the CNode operations, subject to the re-
strictions enforced by the MMU. As such, we ig-
nore these objects for now.

Frame objects provide storage to back virtual memory
pages accessible to the user. Their size may be any
power of two which is at least as large as the small-
est possible virtual memory mapping on the host
architecture.

Interrupt objects are used to store the bookkeeping re-
quired to associate interrupt delivery with an asyn-
chronous endpoint.

The user-level manager that creates an object via re-
type will get the full set of authority over the object. It
can then delegate all or part of the authority it possesses
over the object to one or more of its clients. This is done
by granting each client a capability to the kernel object,
thereby allowing the client to obtain kernel services by
invoking the object.

All the physical memory required to implement and
bookkeep the object is pre-allocated within the object at
the time of its creation, and does not exceed the size of
the UM it was refined from. This means that there are
no implicit allocations within the kernel — the kernel
does not allocate any memory at the time of any object
invocation.

Now returning to the second restriction above, it
should be clear that to guarantee the integrity of kernel
objects, a region of memory must implement a single
type at a time. To ensure this, the retype operation needs
to ensure that no parent of the previously refined capa-
bility undergoing the retype was refined into a type, nor
any child of any parent. The second restriction above
reduces this check to ensuring there is no child of the
current capability. This ensures the operation is O(1),
short lived, and requires no preemption point — i.e., it
improves real-time properties of the kernel and reduces
complexity of formal verification.

3.1.2 Re-using Memory

The model described thus far is sufficient for an ini-
tial task to subdivide UM and any refined kernel objects
amongst its clients if the typed memory associated with
kernel objects is never re-used. Similarly, clients can
form subsystems with their own clients with their own
policy enforced on physical memory consumption based
on applying their policy on delegating the initial author-
ity received.

In order to re-use memory, the kernel needs to guar-
antee that there are no outstanding valid capabilities to
the objects implemented by that memory.

seL4 facilitates this by tracking capability deriva-
tions, which it records in a tree structure called theCa-
pability Derivation Treeor CDT. As an illustrative ex-
ample, when a user creates new kernel objects using an
untyped capability, the newly created capabilities would
be inserted into the CDT as children of the untyped ca-
pability. Similarly, any copy made from a capability
would become a CDT child of the original.

To save memory, and avoid dynamic allocation of
storage for CDT nodes, the CDT is implemented as a



doubly-linked list stored within the (now larger) capa-
bilities themselves. The list is equivalent to the post-
order traversal of the logical tree. In order to reconstruct
the tree from the list, each entry is tagged with its depth
in the logical tree. The CDT adds two words to each ca-
pability, resulting in a capability size of four words; we
view this as a reasonable trade-off.

Possession of the original untyped capability, that was
used to allocate kernel objects, is sufficient authority to
delete those objects. By calling arevokeoperation on
the original untyped capability, users can remove all its
children — all the capabilities that are pointing to ob-
jects in the memory region covered by the UM object.
This operation is a potentially long running operation,
and thus is preemptable. The operation is still atomic
as defined by Fordet al [FHL+99], via restarting the
system call after preemption while ensuring at least one
child is revoked per restart.

Revoking the last capability to a kernel object is eas-
ily detectable, and triggers thedestroyoperation on the
now unreferenced object. Destroy simply deactivates
the object if it was active, and breaks any in-kernel de-
pendencies between it and other objects. The ease of
detection of revocation with the CDT avoids reference
counting, which is an issue for objects without space to
store the count (e.g. page tables) in a system without
meta-data.

Once the revoke operation on the untyped capability
is complete, the memory region can be re-used to allo-
cate other kernel objects. Before re-assigning memory,
the kernel affirms there are no outstanding capabilities.
The CDT provides a simple mechanism to establish this
— the untyped capability should not have any children.

For obvious security reasons kernel data must be pro-
tected from user access. The seL4 kernel prevents such
access by using two mechanisms. Firstly, the above al-
location policy guarantees that there are no overlapping
typedobjects. By typed objects, we mean any object
other than a UM object. Secondly, before inserting a
frame object mapping into the hardware MMU, the ker-
nel checks the size of the object against the MMU page
size.

3.2 Explicit User-Level Management

Figure 1 illustrates a sample system architecture, with a
domain specific OS running at user-level receiving au-
thority to remaining untyped memory after bootstrap-
ping. The domain OS has the freedom to apply many
policies depending on the domain, such as subdividing
UM for delegation to the guest OS, or withholding UM
and providing an interface to applications for them to
request specifically typed OS services.

Virtual memory is provided by domain OS, by in-
stalling frame objects into vnode objects. Depending
on how capabilities are distributed, domain OS could be
only virtual memory provider, or the guest OS may have
access to vnodes of its applications, or with appropriate

Figure 1: Sample system architecture.

authority, applications could even self-page.
While there are fews restrictions on the architecture

of the overall system, what is guaranteed is that no ap-
plication can exceed the authority it possesses, which
also guarantees the precise amount of physical memory
indirectly or directly consumed by and available to the
application.

Application are at liberty to use a suitable policy to
manage the available untyped memory. This can be a
simple static or a complex dynamic policy. In the above
example for instance, the guest OS might employ a com-
plex and therefore error prone policy to manage its UM
objects, in contrast to a simple static policy used by the
domain OS. However, since the guest OS can not ex-
ceed the authority it possesses, any misbehaviour of the
guest OS is isolated from the rest of the system. As a
result, the guest applications benefit from the complex
memory management policy employed by the guest OS,
while the rest of the system is protected from any bugs
incurred due to increase in code complexity in doing so.

4 Related Work

The CAP computer system [NW77] is similar to our ap-
proach in that capabilities to physical memory are re-
quired to create system objects. The most notable differ-
ences between CAP and seL4 are that seL4 avoids exter-
nal memory fragmentation and simplifies bookkeeping
by restricting object sizes to powers of 2, is a software-
based implementation on modern hardware, and has ca-
pability management modelled after that of KeyKOS
[Har85].

Eros[SSF99] and theCache kernel[CD94] also man-
age their kernel data carefully. Both view kernel physi-
cal memory as a cache of the kernel data. However, as
discussed previously, such an approach is not suitable to
systems with temporal requirements.

The K42 kernel [IBM02] takes advantage of C++
inheritance to control the behaviour of the underly-
ing memory allocator. However, K42’s focus is best-
effort performance — it does not provide precise phys-
ical memory allocation guarantees, and variation of the
memory management policies, while easily achieved,



would invalidate any implementation proofs, if they
where possible given K42’s size and complexity.

Exokernel [EKO95] is apolicy free kernel — its
sole responsibility is to securely multiplex the available
hardware resources.Library Operating Systems, work-
ing above the exokernel implement the traditional op-
erating system abstractions. We could find little con-
crete details of the underlying meta-data management
required to bookkeep the current state of the multiplexed
hardware resources (e.g. the secure bindings), other
than the caching approach to avoid meta-data exhaus-
tion, which we have argued is insufficient.

Haeberlen and Elphinstone [HE03] implemented a
scheme of paging kernel memory from user space.
When the kernel runs out of memory for a thread, it will
be reflected to the correspondingkpager. The kpager
can then map any page it possesses to the kernel, and
later preempt the mapping. However, the kpager is not
aware of, and cannot control, the type of data that will be
placed in each page and thus can not make an informed
decision about which page to revoke. In contrast, user-
level resource managers in seL4 are aware of the type
of data placed in a page and therefore able to make in-
formed decisions about resource revocation.

TheL4.secproject at the Dresden University of Tech-
nology has similar goals to our own. They divide kernel
objects into first-class (addressable via capabilities) and
second-class objects (implicitly allocated). Both classes
requirekernel memory objectsto provides the memory
pool for creation of the objects [Kau05]. Kernel mem-
ory objects represent regions of memory used by the
kernel for dynamic allocation. System calls requiring
memory within the kernel, provide a capability to a ker-
nel memory object. The model however, does not allow
direct manipulation of second-class objects such as page
tables or capability tables (CNodes). As such, managers
are denied much of the flexibility provided by seL4’s
capability table interface. They also claim their design
required locking within the kernel, where as our design
is lock-free.

5 Conclusion and Future Work

In this paper, we have presented the a kernel mem-
ory management model that is mostly free of policy
— it does not require the kernel to make any deci-
sions about how, where or when to allocate kernel mem-
ory. Instead, it provides a secure interface for creat-
ing, managing, recycling, and destroying kernel objects
from user level, using untyped physical memory objects.
Kernel operations are (in the context of memory man-
agement) either constant time, or preemptable utilising
restartable atomic operations, which naturally lends it-
self to a lock-free kernel implementation. We believe
that such strong allocation guarantees, preemptability,
and high flexibility are essential in the context of em-
bedded systems, where application requirements are di-
verse and resources are scarce.

At present, the kernel API is implemented as an ex-
ecutable specification written inHaskell. We also have
a proof of authority confinement within a model of the
system, and thus a proof of physical memory “confine-
ment” for systems meeting certain restrictions on object
sharing1. We are now progressing towards a native im-
plementation of the API to quantify the performance of
our approach.

References
[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven

Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In19th SOSP, pages 164–177,
Bolton Landing, NY, USA, Oct 2003.

[CD94] David R. Cheriton and K. Duda. A caching model
of operating system functionality. In1st OSDI,
pages 14–17, Monterey, CA, USA, Nov 1994.

[DEK+06] Philip Derrin, Kevin Elphinstone, Gerwin Klein,
David Cock, and Manuel M. T. Chakravarty. Run-
ning the manual: An approach to high-assurance
microkernel development. InACM SIGPLAN
Haskell WS, Portland, Oregon, USA, Sep 2006.

[DVH66] J.B. Dennis and E.C. Van Horn. Programming se-
mantics for multiprogrammed computers.CACM,
9:143–55, 1966.

[EGK95] Dawson R. Engler, Sandeep K. Gupta, and
M. Frans Kaashoek. AVM: Application-level vir-
tual memory. In5th HotOS, pages 72–77, May
1995.

[EKO95] Dawson R. Engler, M. Frans Kaashoek, and
James O’Toole, Jr. Exokernel: An operating
system architecture for application-level resource
management. In15th SOSP, pages 251–266, Cop-
per Mountain, CO, USA, Dec 1995.

[FHL+99] Brian Ford, Mike Hibler, Jay Lepreau, Roland
McGrath, and Patrick Tullmann. Interface and
execution models in the Fluke kernel. In3rd
OSDI, pages 101–115, New Orleans, LA, USA,
Feb 1999. USENIX.

[Fot61] J. Fotheringham. Dynamic storage allocation in
the Atlas computer, including an automatic use of
a backign store.CACM, 4:435–436, Oct 1961.

[Han99] Steven M. Hand. Self-paging in the Nemesis op-
erating system. In3rd OSDI, pages 73–86, New
Orleans, LA, USA, Feb 1999. USENIX.

[Har85] Norman Hardy. KeyKOS architecture.Operat.
Syst. Rev., 19(4):8–25, Oct 1985.

[HE03] Andreas Haeberlen and Kevin Elphinstone. User-
level management of kernel memory. In8th Asia-
Pacific Comp. Syst. Arch. Conf, volume 2823 of
LNCS, Aizu-Wakamatsu City, Japan, Sep 2003.
Springer Verlag.

[IBM02] IBM K42 Team. Utilizing Linux Kernel Compo-
nents in K42, Aug 2002. Available fromhttp:
//www.research.ibm.com/K42/.

1A technical report containing the proof will be available prior to
the workshop.



[Kau05] Bernhard Kauer. L4.sec implementation — ker-
nel memory management. Dipl. thesis, Dresden
University of Technology, May 2005.

[LHH97] Jochen Liedtke, Hermann Hartig, and Michael
Hohmuth. OS-controlled cache predictability for
real-time systems. InProceedings of the Third
IEEE Real-Time Technology and Applications
Symposium (RTAS ’97), pages 213–227, Wash-
ington - Brussels - Tokyo, Jun 1997. IEEE.

[Lie94] Jochen Liedtke. Page table structures for fine-
grain virtual memory.IEEE Technical Committee
on Computer Architecture Newsletter, 1994.

[Lie95] Jochen Liedtke. Onµ-kernel construction. In
15th SOSP, pages 237–250, Copper Mountain,
CO, USA, Dec 1995.

[NW77] R.M. Needham and R.D.H. Walker. The Cam-
bridge CAP computer and its protection system.
In 6th SOSP, pages 1–10. ACM, Nov 1977.

[Rus99] John Rushby. Partitioning for safety and se-
curity: Requirements, mechanisms, and as-
surance. NASA Contractor Report CR-1999-
209347, NASA Langley Research Center, Jun
1999. Also to be issued by the FAA.

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. EROS: A fast capability sys-
tem. In17th SOSP, pages 170–185, Charleston,
SC, USA, Dec 1999.

[TKH05] Harvey Tuch, Gerwin Klein, and Gernot Heiser.
OS verification — now! In10th HotOS, pages
7–12, Santa Fe, NM, USA, Jun 2005. USENIX.

[Wal02] Carl A. Waldspurger. Memory resource man-
agement in VMware ESX server. In5th OSDI,
Boston, MA, USA, 2002.

[WSG02] Andrew Whitaker, Marianne Shaw, and Steven D.
Gribble. Scale and performance in the Denali iso-
lation kernel. In5th OSDI, Boston, MA, USA,
Dec 2002.


