A Memory Allocation Model For An Embedded Microkernel
Dhammika Elkaduwe Philip Derrin Kevin Elphinstone

National ICT Australiaand University of New South Wales
Sydney, Australia
firstname.lasthame@nicta.com.au

Abstract of a single software component on the device will affect
the whole device.
High-end embedded systems featuring millions of linesOne approach to improving the security and robust-
of code, with varying degrees of assurance, are becamess of components on a device is to provide strong iso-
ing commonplace. These devices are typically expecladon guarantees between components — misbehaviour
to meet diverse application requirements within tight ref a component is confined within the component itself.
source budgets. Their growing complexity makes it irFhere are many approaches to isolation guarantees, such
creasingly difficult to ensure that they are secure aad classical processes and virtual memory [Fot61], iso-
robust. lation kernels [WSGO02], and virtual machines [Wal02],
One approach is to provide strong guarantees of isghich all provide varying levels of isolation guarantees
lation between components — thereby ensuring that thiedifferent granularity. Ideally, when required, isola-
effects of any misbehaviour are confined to the misbigen should be at the level gbartitioning as defined
having component. This paper focuses on an aspechgfRus99]:
the system’s behaviour that is critical to any such guar-
antee: management of physical memory resources. A partitioned system should provide fault
In this paper, we present a secure physical memory containment equivalent to an idealised sys-
management model that gives hard guarantees on phys- teém in which each partition is allocated an in-
ical memory consumption. The model dictates the in- dependent processor and associated peripher-
kernel mechanisms for allocation, however the alloca- als and all inter-partition communications are
tion policy is implemented outside the kernel. We also carried on dedicated lines.
argue that exporting allocation to user-level provides .
the flexibility necessary to implement the diverse re- This paper focuses on one aspect of providing iso-
source management policies needed in embedded 40N guarantees closer to that of partitioning — the

tems, while retaining the high-assurance properties of@nagement of physical memory on the device. Specif-
formally verified kernel. ically, the mechanisms used to directly and indirectly

control access to physical memory while providing ser-

vices to software components on the system. Note that
1 Introduction we not arguing that partitioning is the most appropriate

policy for embedded systems. Our goal is a set of kernel

Embedded Systems are becoming increasing|y Comp|6}@ChanismS that enable System SerViceS, where those
High-end devices, such as mobile phones, PDAs, ent@€chanisms respect and can enforce a domain-specific
tainment devices, and set-top boxes, feature millions®fstem allocation policy, where that policy may include
lines of code with varying degrees of assurance of cfartitioning of memory at one extreme, and first-come
rectness. These devices are no longer closed systéifgéserved at the other.
under control of the manufacturer. They feature third- The problem is more complex than simply control-
party ComponentS’ app"cationsy and even whole opeﬂmg the size of virtual memaory, or resident set size of an
ing systems (such as Linux) that can be installed by tABplication. Services such as pages or threads not only
manufacturer, suppliers and even the end user. WHgAUire allocation of memory to directly support the ser-
constructing such devices using traditional unprotectéige (a frame or thread control block), service provision
real-time executives, it becomes impossible for embeilso results in the allocation of kernel meta-data to im-
ded system vendors to provide guarantees about the pJement the service (such as page tables) or provide the
haviour of the device. Failure or malicious behaviolookkeeping required to reclaim the storage on release.
*National ICT Australia is funded by the Australian Govermtse Kernel meta-data must taken into accountin any system
Deparatlment of Communications, Infgrmation Technologyd @he attempting to prowde memory allocation gqarantees'
Arts and the Australian Research Council through Backingtrslia’s We can summarise our approach to tackling the meta-
Ability and the ICT Research Centre of Excellence programs. data issue as simply eliminate all meta-data in the ker-

nel. We achieve this by the following three techniquesf resources required to ensure all authorised service re-

careful avoidance of mechanisms requiring bookkeeguiests are satisfied during peak demand.

ing, pre-allocation of bookkeeping required within ex- An illustrative example of this utilisation issue in

plicitly allocated kernel objects, and the promotion gfractice are virtual machine monitors. Guest operat-

meta-data into first class kernel objects. The approanly systems are an ideal candidate for a fixed preallo-

reduces the problem of memory allocation to kernel obated amount of physical memory (in fact guest OSes

ject allocation. We also present a model for the disttitsually assume it). However, significantly higher effi-

bution of physical memory, and the creation of kernelency can be achieved if memory can be safely reas-

objects within that memory. signed to where it can be utilised [Wal02]. Memory al-
Kernel services and complexity have a direct colscation mechanisms must support dynamic allocation

sequence on our ability to successfully implement oand re-assignment of memory.

approach. Thus our overall system design is that of

a mlcrokerne_l-based_s_ystem, _/vhere the_mlcrokerrib Security

aims to provide a minimal, efficient, flexible kerne

with the strong guarantees needed for the foundatip® avoid the denial-of-service attack described in the

of the system. Higher-level system services are pigrevious section, the memory allocation mechanism

vided by user-level servers, running outside the kernﬁ‘iust be able to enforce a desired physica] memory al-

in their own protection domains. Protection domaingcation policy. Additionally, the mechanism must not

and their associated low-level resources are strictly mayxye by-design overt storage channels that can be used

aged by the microkernel. Normal applications accegsviolate confinement guarantees.
system services by interacting with the servers via inter-

process communication. Such a system is not only mare .
amenable to applying our approach to the core kernél3 Real-time

the overall sy_stem has _th_e potential to be more .mbuﬁ}eal—time behaviour is an important issue in the con-
as faults are isolated within servers and appllcat|onS'té§(t of embedded systems. The main issue that arises
is are also flexible and extensible, allowing user-lev&)ith memory allocation in the real-time context is pre-
serversto be gdded, removed or repl:_;tced. _dictability of execution times of kernel operations. Pre-
In the remainder of the paper, we discuss the requigfiziaple execution times are a prerequisite for schedu-
ments and issues surrounding the construction of cop;jity analysis. Memory allocation affects predictabil
plex embeddec_i systems that consequently motivated RYfvhen physical memory caching is used to avoid ker-
approach and influenced its design (Section 2). In Sefe; memory starvation, be it implemented with virtual
tion 3, we then overview our microkermnseL4(secure memory or managed explicitly. Several operating sys-
embedded.L4), and desgrlbeln detgll its |n-.kernel MeRyms use kernel physical memory as a cache of data
ory allocation model. Finally, Section 4 discusses regyctures stored at user-level or on disk [SSF99,CD94],
lated work, and conclusions and future work are in Segaq thys can always evict cache content to service new
tion 5. requests to avoid physical memory-based denial of ser-
vice. However, such a strategy is not readily amenable
; to execution time analysis, and if it was, would result in
2 M emory Allocation too pessimistic an estimate to be useful. A memory allo-

cation mechanism must be able to guarantee allocations
Memory allocation to support kernel services and agy real-time components.

sociated meta-data can have a direct or indirect Effectrhe structure of bookkeeping in a kernel managing
on the security, real-time properties, efficiency, and agtocation also affects predictability of interrupt or eve
surance of the overall system. The following sectiongtencies. Traversal of lists or trees can result in varying
examine describe issues and requirements of a mem@ryinreasonably long executing times for kernel opera-
allocation mechanism in each of these areas. tions traversing the list. Ideally, all system calls would
complete in constant time, or at least be preemptable to
minimise interrupt latency.

CPU cache colouring techniques for improving pre-

Physical memory is a limited and exhaustible resour¢lictable cache behaviour are also dependent on control
Any limited resource requires precisely controlled allf the memory allocation of the data structures requiring
cation to avoid one task’s requests for authorised séflouring [LHH97], including the kernel’s internal data
vices from directly or indirectly denying service to anStructures.

other task. Simple per-task quota-based schemes or

static preallocation would suffice in a staFichIy .struc«z. 4 No Single Policy

tured system. However, any dynamic variation in sys-

tem structure or resource requirements leads to undgiven the wide variety of potential application domains,
utilisation, due to the overly conservative commitmemte expect no single kernel memory allocation policy

2.1 Memory Utilisation

to suffice in all situations. At one extreme, we must These potentially conflicting requirements lead to the
support simple static systems where the main requioenclusion that any kernel model that expectetnain
ment is spatial partitioning of components of the syserified must minimise the allocation policy in the ker-
tem [Rus99]. For kernel memory allocation, this imrael, and maximise the control higher-level software has
plies a guaranteed fixed allocation of physical memooyer the management of physical memory in the ker-
(including meta-data) to each partition that cannot el. If such a model exists then we can enforce diverse
interfered with by any activities of any partition. In thellocation policies over kernel memory by modifying
other extreme, we expect to support best-effort embdugher-level software, rather than the kernel.
ded operating systems where physical memory manage-
ment is dynamic, on-demand, and uncritical.

A realistic example of the latter extreme is in efid The selL 4 Design
ciently supporting para-virtualised legacy operating sys
tems on the microkernel [BDF03]. The legacy OS To meet the requirements discussed in Section 2,
is in the best position to determine the allocation dfie seL4 project proposes a design inspired by early
page tables, pages, frames, and thread control blodkstdware-based capability machines (such as CAP
This scenario is just a specialised case of the more giMW77]), where capabilities control access to physi-
eral argument that application self-management of rgal memory; the KeyKOS and EROS systems [Har85,
sources can lead to more efficient use of those resourg&$99], with their controls on dissemination of capabil-
[Han99, EGK95]. ities; and the L4 microkernel [Lie95], where the seman-

In addition to supporting a specific policy suitabléics of virtual memory objects are implemented outside
for a particular application domain, we expect the keof the kernel.
nel to potentially support several kernel physical mem-In this section, we provide a brief overview of the
ory allocation policies concurrently. A realistic examseL4 microkernel, and a description of the mechanisms
ple is a system providing one or more critical partition, provides for in-kernel memory management (see Sec-
while at the same time, efficiently supporting an begion 3.1); then, in Section 3.2 we will discuss the bene-
effort legacy operating system. Ideally, the kernel merfits of our scheme.
ory allocation mechanism will be different depending on
whether the kernel is servicing a request from a critical .
application, legacy operating system, or an applicationl OVerview

hosted by that legacy operating system. Similar to its predecessor, the L4 microkernel [Lie95],

selL4 provides three basic abstractions: threads, address
25 Assurance spaces and inter-process communication. In addition,
selL4 introduces a novel abstraction calledyped mem-

Ideally, for a truly trustworthy embedded kernel, a higbry — an abstraction of a region of physical memory
degree of assurance is required of any model and imphgiich we will later describe precisely.
mentation of the kernel. Assurance here meaning proofThese abstractions are provided via named, first-class
of having the desired properties given a model of thkernel objects. Each kernel object implements a partic-
kernel, and a proof that the implementation behavesudar abstraction and supports one or more operations re-
the model specifies. Without a high degree of assigited to the abstraction it provides. Authorised users can
ance of this basic low-level system functionality, it i®btain kernel services by invoking operations on kernel
impossible to provide a high degree of assurance for thigjects.
higher-level software stack built upon the kernel. The- Authority over objects are conferred via capabili-
orem proving tools have grown powerful enough, angks [DVH66]. Capabilities are tamper-proof: they are
microkernels are small enough, for such a degree of 8sred inside kernel objects call@Nodes— arrays of
surance to be feasible [TKHO05]. capabilities, which may be inspected and modified only

Our desire (and efforts [DEK06]) to formally verify via invocation of the CNode object itself — and there-
our embedded kernel introduces another requiremenfdee are guarded against user tampering. CNodes are
our design. In order to avoid invalidating any successfsimilar to KeyKOSnodes except that they vary in size
verification effort, any model addressing kernel memony powers of 2, and are composed similargoarded
allocation must ideally be fixed. page tablegLie94], to form a local capability address

However, we have argued that in the embedded dipace called th€Space Capabilities are immutable;
main the operating system needs to support a wide ramggle user-level programs may specify some of the ca-
of memory allocation policies. By “operating systempability’s properties at the time it is created, those prop-
we mean the microkernel and user-level servers that rnities may only be changed by removing the capability
outside the kernel and provide services to applicatiand replacing it with another.
programs. For this to be feasible, the microkernel it- System calls are invocations of capabilities. Users
self must support diverse allocation policies over its ispecify a capability as an index into a local capability
kernel physical memory. address space, that would translate the given index to

a capability. Tasks have no intrinsic authority beyorferame objects provide storage to back virtual memory

what they possess as capabilities. pages accessible to the user. Their size may be any
power of two which is at least as large as the small-
3.1.1 Memory Allocation Model est possible virtual memory mapping on the host

)) architecture.
At boot time, seL4 preallocates all the memory required

for the kernel to run, including code, data, stack sellterrupt objects are used to store the bookkeeping re-
tions (seL4 is a single kernel-stack operating system). duired to associate interrupt delivery with an asyn-
The remainder of the memory is given to the first task in ~ chronous endpoint.

the form of capabilities taintyped memorfUM), and The user-level manager that creates an object via re-
some additional capabilities to kernel objects that Wefghe will get the full set of authority over the object. It
required to bootstrap the task. UM is restricted in sizg&n then delegate all or part of the authority it possesses
to powers of 2, and is used as the basis for creating gller the object to one or more of its clients. This is done
other objects in the system. by granting each client a capability to the kernel object,

A capability to UM (a parent) can be refined into canerepy allowing the client to obtain kernel services by
pabilities to smaller power-of-2 sized UM (children) Vif?'nvoking the object.
thergty_pemethod of UM. Retype has the following two || the physical memory required to implement and
restrictions: bookkeep the object is pre-allocated within the object at

1. the refined child capabilities must refer to norih® time of its creation, and does not exceed the size of

overlapping UM objects of size less than or equgpe_UM_n_was ref|_ned frqm_. This means that there are

no implicit allocations within the kernel — the kernel
does not allocate any memory at the time of any object
2. the parent capability must have no previously r@vocation.

fined child capability derived from it. Now returning to the second restriction above, it

The first restriction is obviously required; the need fosrhould be clear that to guarantee the integrity of kernel

- . . j region of memory must implemen ingl
the second restriction will be explained later. Gbjects, a region of memory must implement a single

o L type at atime. To ensure this, the retype operation needs
In addition to smaller subdivided UM, the retype P ensure that no parent of the previously refined capa-

e_rgtlon can also retype UM m_to akernel object of a Spﬁi}lity undergoing the retype was refined into a type, nor
cific type. The seL4 API defines seven types of kerné

: i . . . : hild of an rent. Th nd restriction Vi
objects, associated with the abstractions it provides. AfY © d of any parent € seco d restrictio above
reduces this check to ensuring there is no child of the

kef”e' primitives (system calls) are invocations of the%:leJrrent capability. This ensures the operation is O(1),

objects. : . .) LN
short lived, and requires no preemption point — i.e., it

TCB (Thread Control Block) objects implementmproves real-time properties of the kernel and reduces

threads, which are seL4’s basic unit of executioncomplexity of formal verification.

to the original, and

Endpoint objects implement inter-process commung 1 > Re-using Memory
cation(IPC). Users send and receive messages by
invoking capabilities to these objects. Like L4 IPCThe model described thus far is sufficient for an ini-
this operation is synchronous and unbuffered. tial task to subdivide UM and any refined kernel objects

amongst its clients if the typed memory associated with

Asynchronous Endpoint objects are used to imple-kernel objects is never re-used. Similarly, clients can
ment asynchronous IPC. Rather than having{gm subsystems with their own clients with their own
queue of threads waiting to send, they containgyjicy enforced on physical memory consumption based
buffer which is used to store the content of the megp, applying their policy on delegating the initial author-
sage after a sender has resumed execution. ity received.

In order to re-use memory, the kernel needs to guar-

CNode objects are arrays of* (wheren > 0) capa- i ; b
Aptee that there are no outstanding valid capabilities to

bilities. They constitute the CSpace — construct , :
tge objects implemented by that memory.

as a tree of CNodes. Invoking a CNode allows o . _ o .
user-level server to manipulate a region of CspaceseL4 facilitates this by tracking capability deriva-

mapped by the tree of which that CNode is the roéi[ons, which it records in a tree structure called Ge
pability Derivation Treeor CDT. As an illustrative ex-

VNode objects are used to implement the data addresaple, when a user creates new kernel objects using an
space, or the VSpace. The exact structure of thesgtyped capability, the newly created capabilities would
objects would depend on the architecture. Howe inserted into the CDT as children of the untyped ca-
ever, operations on these objects are essentiallpability. Similarly, any copy made from a capability
subset of the CNode operations, subject to the rgeuld become a CDT child of the original.
strictions enforced by the MMU. As such, we ig- To save memory, and avoid dynamic allocation of
nore these objects for now. storage for CDT nodes, the CDT is implemented as a

doubly-linked list stored within the (now larger) capa-
bilities themselves. The list is equivalent to the post-
order traversal of the logical tree. In order to reconstruct v
the tree from the list, each entry is tagged with its depth Domain OS
in the logical tree. The CDT adds two words to each ca-
pability, resulting in a capability size of four words; we
view this as a reasonable trade-off.

Possession of the original untyped capability, that was
used to allocate kernel objects, is sufficient authority to 4 A
delete those objects. By callingravokeoperation on Guest App. Guest App.
the original untyped capability, users can remove all its
children — all the capabilities that are pointing to ob-
jects in the memory region covered by the UM object. Figure 1: Sample system architecture.
This operation is a potentially long running operation,
and thus is preemptable. The operation is still atomic . —
as defined by Foreét al [FHL'99], via restarting the authority, applications could even self-page.

system call after preemption while ensuring at least on(fvxh”e the:le are fews rr]est-nctmns on tr:je. ar(r:]hltecture
child is revoked per restart. of the overall system, what is guaranteed is that no ap-

Revoking the last capability to a kernel object is eag[lcatlon can exceed the authority it possesses, which

ily detectable, and triggers tlestroyoperation on the _also guarantees the precise amount of physical memory

now unreferenced object. Destroy simply deactivatg]sdir?dly or directly consumed by and available to the
the object if it was active, and breaks any in-kernel dgppllcqtlon. . : :
pendencies between it and other objects. The ease dtf\ppllcatlon are at liberty to use a swtable_ policy to
detection of revocation with the CDT avoids referené@an?getﬂ:_e available Tnt;:jped m_emolr_y ' 'I|'h|tshcanbbe a
counting, which is an issue for objects without space WynpP els ? icora comphex ynagg: Po 'ﬁy' n I © above
store the count (e.g. page tables) in a system with pmpleforinstance, the guest > Mig temp oy a com-
meta-data. plex and therefore error prone policy to manage its UM

Once the revoke operation on the untyped capabilg jects, in contrast to a simple static policy used by the

. . main OS. However, since the guest OS can not ex-
is complete, the memory region can be re-used to al o . .
ceed the authority it possesses, any misbehaviour of the

cate other kernel objects. Before re-assigning memor}jeSt OS is isolated from the rest of the system. As a

the kernel affirms there are no outstanding capabilities. o :
: . A . result, the guest applications benefit from the complex
The CDT provides a simple mechanism to establish thig)
. . memory management policy employed by the guest OS,
— the untyped capability should not have any children.,". .
" . while the rest of the system is protected from any bugs
For obvious security reasons kernel data must be pro- . . Lo ;
|n%urred due to increase in code complexity in doing so.
tected from user access. The selL4 kernel prevents suc

access by using two mechanisms. Firstly, the above al-

location policy guarantees that there are no overlappipg Related Work
typedobjects. By typed objects, we mean any objec

other than a UM object. Secondly, before inserting-|she CAP computer system [NW77] is similar to our ap-
frame object mapping into the hardware MMU, the keg

sel4 Kernel

Guest OS App. App. App.

| checks the si the obi) he MMU roach in that capabilities to physical memory are re-
giiec ecks the size of the object against the Padfired to create system objects. The most notable differ-

ences between CAP and selL4 are that seL4 avoids exter-
nal memory fragmentation and simplifies bookkeeping
3.2 Explicit User-Level Management by restricting object sizes to powers of 2, is a software-
based implementation on modern hardware, and has ca-
Figure 1 illustrates a sample system architecture, witlpability management modelled after that of KeyKOS
domain specific OS running at user-level receiving a[Har85].
thority to remaining untyped memory after bootstrap- Eros[SSF99] and th€ache kernelCD94] also man-
ping. The domain OS has the freedom to apply maage their kernel data carefully. Both view kernel physi-
policies depending on the domain, such as subdividiogl memory as a cache of the kernel data. However, as
UM for delegation to the guest OS, or withholding UMliscussed previously, such an approach is not suitable to
and providing an interface to applications for them teystems with temporal requirements.
request specifically typed OS services. The K42 kernel [IBM02] takes advantage of C++
Virtual memory is provided by domain OS, by ininheritance to control the behaviour of the underly-
stalling frame objects into vnode objects. Dependifigg memory allocator. However, K42's focus is best-
on how capabilities are distributed, domain OS could leffort performance — it does not provide precise phys-
only virtual memory provider, or the guest OS may haveal memory allocation guarantees, and variation of the
access to vnodes of its applications, or with appropriateemory management policies, while easily achieved,

would invalidate any implementation proofs, if they At present, the kernel API is implemented as an ex-
where possible given K42's size and complexity. ecutable specification written iHaskell We also have
Exokernel [EKO95] is apolicy free kernel — its a proof of authority confinement within a model of the
sole responsibility is to securely multiplex the availablkeystem, and thus a proof of physical memory “confine-
hardware resources&ibrary Operating Systemsvork- ment” for systems meeting certain restrictions on object
ing above the exokernel implement the traditional ogharing. We are now progressing towards a native im-
erating system abstractions. We could find little coplementation of the API to quantify the performance of

crete details of the underlying meta-data management approach.

required to bookkeep the current state of the multiplexed

hardware resources (e.g. the secure bindings), other
than the caching approach to avoid meta-data exha _eferenceﬁ
tion, which we have argued is insufficient. [BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven

Haeberlen and Elphinstone [HEO3] implemented a
scheme of paging kernel memory from user space.
When the kernel runs out of memory for a thread, it will
be reflected to the correspondikgager The kpager
can then map any page it possesses to the kernel, giisha
later preempt the mapping. However, the kpager is not
aware of, and cannot control, the type of data that will be
placed in each page and thus can not make an informggi +og]
decision about which page to revoke. In contrast, user-
level resource managers in seL4 are aware of the type
of data placed in a page and therefore able to make in-
formed decisions about resource revocation.

ThelL4.seroject at the Dresden University of TechfpvH66]
nology has similar goals to our own. They divide kernel
objects into first-class (addressable via capabilitied) an
second-class objects (implicitly allocated). Both classgeGk95]
requirekernel memory object® provides the memory
pool for creation of the objects [Kau05]. Kernel mem-
ory objects represent regions of memory used by the
kernel for dynamic allocation. System calls requiringEKO95]
memory within the kernel, provide a capability to a ker-
nel memory object. The model however, does not allow
direct manipulation of second-class objects such as page
tables or capability tables (CNodes). As such, managers
are denied much of the flexibility provided by sel.4'§HL*99]
capability table interface. They also claim their design
required locking within the kernel, where as our design
is lock-free.

. [Fot61]
5 Conclusion and Future Work

In this paper, we have presented the a kernel mefRan99]
ory management model that is mostly free of policy

— it does not require the kernel to make any deci-
sions about how, where or when to allocate kernel meptargs]
ory. Instead, it provides a secure interface for creat-

ing, managing, recycling, and destroying kernel objeqﬁE03]
from user level, using untyped physical memory objects.
Kernel operations are (in the context of memory man-
agement) either constant time, or preemptable utilising
restartable atomic operations, which naturally lends it-

self to a lock-free kernel implementation. We believgsM02]
that such strong allocation guarantees, preemptability,
and high flexibility are essential in the context of em-

Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
lan Pratt, and Andrew Warfield. Xen and the art
of virtualization. In19th SOSPpages 164-177,
Bolton Landing, NY, USA, Oct 2003.

David R. Cheriton and K. Duda. A caching model
of operating system functionality. lhst OSD]
pages 14-17, Monterey, CA, USA, Nov 1994.

Philip Derrin, Kevin Elphinstone, Gerwin Klein,
David Cock, and Manuel M. T. Chakravarty. Run-
ning the manual: An approach to high-assurance
microkernel development. IACM SIGPLAN
Haskell WS$Portland, Oregon, USA, Sep 2006.

J.B. Dennis and E.C. Van Horn. Programming se-
mantics for multiprogrammed computeACM,
9:143-55, 1966.

Dawson R. Engler, Sandeep K. Gupta, and
M. Frans Kaashoek. AVM: Application-level vir-
tual memory. In5th HotOS pages 72-77, May
1995.

Dawson R. Engler, M. Frans Kaashoek, and
James O'Toole, Jr. Exokernel: An operating
system architecture for application-level resource
management. Ih5th SOSPpages 251-266, Cop-
per Mountain, CO, USA, Dec 1995.

Brian Ford, Mike Hibler, Jay Lepreau, Roland
McGrath, and Patrick Tullmann. Interface and
execution models in the Fluke kernel. 8id
OSD|, pages 101-115, New Orleans, LA, USA,
Feb 1999. USENIX.

J. Fotheringham. Dynamic storage allocation in
the Atlas computer, including an automatic use of
a backign storeCACM, 4:435-436, Oct 1961.

Steven M. Hand. Self-paging in the Nemesis op-
erating system. 18rd OSD| pages 73-86, New
Orleans, LA, USA, Feb 1999. USENIX.

Norman Hardy. KeyKOS architecturéDperat.
Syst. Rey19(4):8-25, Oct 1985.

Andreas Haeberlen and Kevin Elphinstone. User-
level management of kernel memory.8th Asia-
Pacific Comp. Syst. Arch. Confolume 2823 of
LNCS Aizu-Wakamatsu City, Japan, Sep 2003.
Springer Verlag.

IBM K42 Team. Utilizing Linux Kernel Compo-
nents in K42 Aug 2002. Available fromhttp:
Ilwww.research.ibm.com/K42/.

bedded systems, where application requirements are diza technical report containing the proof will be availabldgprto

verse and resources are scarce.

the workshop.

[Kau05]

[LHH97]

[Lie94]

[Lie95]

INW77]

[Rus99]

[SSF99]

[TKHO5]

[Wal02]

[WSG02]

Bernhard Kauer. L4.sec implementation — ker-
nel memory management. Dipl. thesis, Dresden
University of Technology, May 2005.

Jochen Liedtke, Hermann Hartig, and Michael
Hohmuth. OS-controlled cache predictability for
real-time systems. IfProceedings of the Third
IEEE Real-Time Technology and Applications
Symposium (RTAS '97pages 213-227, Wash-
ington - Brussels - Tokyo, Jun 1997. IEEE.

Jochen Liedtke. Page table structures for fine-
grain virtual memorylEEE Technical Committee
on Computer Architecture Newslett@i994.

Jochen Liedtke. Omu-kernel construction. In
15th SOSP pages 237-250, Copper Mountain,
CO, USA, Dec 1995.

R.M. Needham and R.D.H. Walker. The Cam-
bridge CAP computer and its protection system.
In 6th SOSPpages 1-10. ACM, Nov 1977.

John Rushby. Partitioning for safety and se-
curity: Requirements, mechanisms, and as-
surance. NASA Contractor Report CR-1999-
209347, NASA Langley Research Center, Jun
1999. Also to be issued by the FAA.

Jonathan S. Shapiro, Jonathan M. Smith, and
David J. Farber. EROS: A fast capability sys-
tem. In17th SOSPpages 170-185, Charleston,
SC, USA, Dec 1999.

Harvey Tuch, Gerwin Klein, and Gernot Heiser.
OS verification — now! In10th HotOS pages
7-12, Santa Fe, NM, USA, Jun 2005. USENIX.

Carl A. Waldspurger. Memory resource man-
agement in VMware ESX server. Bth OSD]|
Boston, MA, USA, 2002.

Andrew Whitaker, Marianne Shaw, and Steven D.
Gribble. Scale and performance in the Denali iso-
lation kernel. In5th OSD]| Boston, MA, USA,
Dec 2002.

