
A declarative approach to extensible interface

compilation
Nicholas FitzRoy-Dale

National ICT Australia and University of New South Wales

Sydney, Australia

nfd@cse.unsw.edu.au

Abstract— In microkernel-based operating systems,

source-to-source compilers generate code to ease the pro-

cess of marshaling data for communication via message pass-

ing. However, the rule of thumb for these interface compilers
seems to be “simple, extensible, efficient output – pick any

one”. I argue that the major cause of extensibility-limiting

complexity in interface compilers comes from the source-

to-source transformation code itself, and this complexity is

primarily a result of the difficulties inherent in supporting

multiple targets. I describe a specification-based approach

for generating interface compilers, discuss the advantages

of such an approach over a procedural approach, and out-

line a proposed implementation, with particular reference

to the advantages of a specification-based approach to in-

terface compilation in terms of flexibility and extensibility.

I. Introduction

With any systems programming task come situations in-
volving code that could easily be machine generated. A
particularly good example of this in microkernel-based sys-
tems is in the code required for communication of messages
across an interface boundary. Such code is not strictly boil-
erplate, because it varies with the data layout of the mes-
sage being sent, but the interface-specific differences can
easily be described programmatically. Using a code gen-
erator is not necessarily the right choice: adding another
layer of abstraction to the communication process makes
debugging more difficult and encourages new programmers
to ignore the intricacies of the underlying interface (the so-
called leaky abstraction problem[1]). However, code gener-
ators make up for these shortcomings in many ways. For
example, several classes of bugs are not possible in gener-
ated code, and all code making use of the same interface
will communicate across it in the same way.

Automating the process requires a tool capable of pro-
ducing code from a specification, usually an interface com-

piler. This specialised tool parses an interface specification,
usually in a form of Interface Definition Language (IDL),
and produces output in the language used to implement
the rest of the system (the target language), typically in the
form of stub functions. Code on the caller side of the inter-
face uses these stubs like any other function: the work of
packing function parameters into an appropriate location in
memory (marshaling), communicating using an appropri-

National ICT Australia is funded by the Australian Government’s
Department of Communications, Information Technology, and the
Arts and the Australian Research Council through Backing Aus-
tralia’s Ability and the ICT Research Centre of Excellence programs.

ate operating system primitive, and extracting the results
from memory and returning them to the calling function
(unmarshaling) is performed by the stub. Interface com-
pilers produce appropriate mirror stub functions for the
service side of the interface, and may also produce skeletal
code for a server loop implementing the interface.

Interface compilers are used in many areas of comput-
ing. Servers and distributed systems may make use of
a component system of which stub compilation is only a
very small part, such as an implementation of CORBA[2],
COM[3], or JavaBeans[4]. All these component systems
support distribution across a network in addition to other
“enterprise” features such as load balancing and quality of
service. In microkernel-based systems, by contrast, space
and efficiency constraints tend to result in the need for safe
cross-domain communication without the overheads of a
traditional component system. In this situation, most of
the work is performed in stubs produced by an interface
compiler.

Interface compilers for microkernel-based systems are the
focus of this paper. In addition to missing many of the fea-
tures described above, typical interface compilers in this
category differ from their enterprise equivalents in two ma-
jor ways: they generally produce simpler code, because
the microkernel performs the tasks of message-passing and
queueing and thus acts as a (partial) object request broker;
and they are more likely to be required to produce multiple
types of output, even for the same microkernel, because the
primary concern of microkernel-focused interface compilers
is to produce fast, as opposed to feature-complete, code.

Historically, these interface compilers have been heavily
tied to their attendant microkernel. For example, the Mach
Interface Generator (MIG)[5] accepts a Mach-specific in-
terface specification, produces highly Mach-specific code,
and could not reasonably be used with another kernel.
More recently, interface compilers capable of accepting var-
ious IDLs and supporting multiple target languages have
emerged. These include the Flexible IDL Compiler Kit
(Flick)[6], which supports IDLs such as CORBA IDL and
ONC RPC at the frontend, and targets Mach[7] and var-
ious incarnations of L4[8] at the backend. Flick achieves
this modularity through a series of programmer-visible in-
termediate languages (five in total) which can be operated
on independently.

Changes in the design of an interface compiler are typi-
cally made either to improve performance or improve gener-

P a r s e rS o u r c e (I D L) P a r s e rT e m p l a t e sI D L A S TS o u r c e (H e a d e r s)
S o u r c e (O u t p u t)

Fig. 1. Stages in the Magpie interface compiler

ality. However, interface compilers for microkernels remain
remarkably difficult to adapt to changing interface require-
ments. There are three major reasons for the difficulty:
firstly, they tend to remain tightly-coupled to a small se-
lection of kernels; secondly, the core interface-generation
routines tend to be difficult to modify; and, finally, repre-
sentation of target code is primitive compared with that
offered by source-to-binary compilers.

In the rest of this paper I describe extensibility issues
and their various solutions in current interface compilers. I
then propose an alternative interface compiler design, mak-
ing use of specification-directed transformations, and dis-
cuss the advantages and disadvantages of this approach.
Although I refer to several popular interface compilers, the
focus is on adding a declarative layer to Magpie, an inter-
face compiler used with NICTA L4.[9]

II. Interface compilers

Like source-to-binary compilers, interface compilers are
all composed of at least a frontend, containing the parser
for the specification language, and a backend, containing
the code generator for the target system. It is common
to make use of at least one intermediate representation.
Figure 1 shows the major stages of the Magpie interface
compiler.

Source-to-binary compilers may support multiple plat-
forms, but the targets (platform-specific assembly lan-
guages) are all very similar; intermediate stages therefore
output some variety of three-address code[10], which is by
design quite homogeneous. The intermediate stage of an
interface compiler, however, must target some higher-level
language, such a C, working with a kernel or library API.
Unlike processor assembly languages, kernel or library APIs
are very dissimilar, even when designed for the same task
(i.e., communication between threads). Designing an ef-
fective intermediate stage for an interface compiler is thus
simply a harder task, because of higher degree of cross-
platform variation. A common response in interface com-
piler design has been to blur the separation between in-
termediate stages and final code generation, resulting in
intermediate stages which are complicated, inflexible, or
both.

Further complicating the task of the interface compiler
are the frequently-changing requirements of applications
and the kernel, a particularly severe problem for research
systems. For example, NICTA L4 has undergone several
internal API changes, each one necessitating an equivalent

change to the interface compiler. The difficulty of imple-
menting these changes in the popular IDL4 interface com-
piler has led to the development of Magpie, an interface
compiler based on a flexible template system. The partial
success of Magpie in this regard is the prime motivation for
the work described in this paper.

A. Code transformation

The real work of an interface compiler is performed by
the intermediate stage known as the generator, which anal-
yses the internal representation of the interface definition
and produces output (either in the target language, or in an
intermediate format). In modern interface compilers, the
generator forms a third stage between the parser and code
output stages, allowing for some degree of flexibility with
regard to input and output formats. Nonetheless, making
sizeable changes to the format of the output requires modi-
fying the generator, and here choice of language and gener-
ator design become important: in many common interface
compilers for microkernels, such as Flick, IDL4, and DICE,
making even simple changes requires changing a nontrivial
amount of code.

B. Code output

Code output is widely regarded to be an easy problem
and is thus given little attention during interface compiler
development. Indeed, it is easy (in the sense that little
design is required) to create a simple interface generator
that generates appropriate code for a fixed interface, tied to
a single microkernel. However, there are several problems
with this approach that both limit the scope of interface
compilers and increase their maintenance overhead.

Typically, an interface compiler backend is composed of
a series of printf statements which together produce the
entire stub function or module. This approach is simple
to implement, and the intent of the code is obvious, but it
is difficult to extend and to test. Alternatively, the back-
end may assemble a syntax tree in the target language,
which is then walked as a final step to produce source code.
This approach at least provides some reassurance that the
generated code will be syntactically correct, but the usual
method of assembling the tree in a procedural language,
calling class constructors, is difficult to follow, and difficult
to extend.

Before considering parameterised templates it is impor-
tant to consider boilerplate code, that is, code which does
not change between invocations of the compiler. Gener-
ated code typically contains a lot of boilerplate in the form
of header comments, error-handling code, helper routines,
etc. A typical procedural approach to generating this sort
of code is simply to insert it at appropriate points when
producing output. This looks ugly for a system that uses
printf-style output, and practically unreadable (if it oc-
curs in large chunks) in a system that generates a concrete
syntax tree on-the-fly. In either case, boilerplate gener-
ation is simply noise for a maintainer attempting to un-
derstand what the interface compiler does. The situation
gets worse if the programmer wishes to extend the system,

1 addTo(result, new CASTDeclarationStatement(

2 new CASTDeclaration(

3 new CASTTypeSpecifier(

4 new CASTIdentifier("L4_ThreadId_t")),

5 new CASTDeclarator(

6 new CASTIdentifier("_dummy"))))

7);

Fig. 2. Variable declaration, IDL4

1 L4_MsgTag_t _result;

2 /*-run(templates.get(

’client_function_body_pre_ipc_defs’))-*/

...

3 /*-run(templates.get(

’client_function_body_pre_ipc’))-*/

4 _result = L4_Call(_service);

5 /*-run(templates.get(

’client_function_body_post_ipc’))-*/

Fig. 3. An example of the Magpie templating language

perhaps with a new output mode. She is then presented
with two options: to copy the code, creating the opportu-
nity for unwanted divergence in the future; or to refactor
the code to be more fine-grained, making flow less obvious
and providing no guarantee that additional changes will
not necessitate further refactoring in the future.

The difficulties associated with code generated piece-
meal are magnified for sections of parameterised code, i.e.,
the sections of code in which the generator actually per-
forms work. Using a syntax tree approach, a single line of
(relatively-simple) generated code consumes approximately
six lines of generated AST (abstract syntax tree) in IDL4.
Figure 2, extracted from IDL4, creates a new type instance
using multiple classes to construct an abstract syntax tree,
which is later walked to produce output. The example in
the figure is the equivalent of the C code L4 ThreadId t

dummy;.

C. Magpie

The Magpie interface compiler was developed in recogni-
tion of these code-generation problems. Magpie uses a sim-
ple templating system, interspersing control code and the
target language. The design goals were to keep the backend
simple to maintain for developers who wished to make use
of alternative interfacing techniques but did not wish to
become intimately familiar with Magpie’s code base, and
to maintain code flow of the target language as much as
possible, thus making the generator and backend easy to
understand and, in turn, easy to extend. Magpie was not
the first interface compiler to make use of templates. Flick
supports its own templating system with the apparent de-
sign goal of reducing the amount of non-parameterised code
present in the existing interface compiler. Because they are
relatively new, Flick’s templates are not supported by most
backends.

A small example of the Magpie templating language is

int notifymask;

notifymask = set_notifymask(0);

L4_Call(...);

set_notifymask(notifymask);

Fig. 4. Code to manage async IPC in NICTA L4

shown in Figure 3. The templating command language
is embedded inside comments within the target language
(Python within C, in this case). The code shown exe-
cutes the L4 Call() function, which performs synchronous
IPC in L4. Before and after the call, additional templates
are executed using the run() function (lines 2, 3, and 5).
These templates may generate code that performs addi-
tional work to support the IPC operation. For example,
in NICTA L4, asynchronous IPC notifications must be dis-
abled on the client side prior to a synchronous IPC call.
Code generated by the client function body * functions
thus saves the old state of asynchronous IPC notification,
disables asynchronous IPC notification, and re-enables it
after L4 Call() completes. The C code for this function-
ality is show in Figure 4.

The run() command is a convenient extensibility mech-
anism, but convolutes the flow of the template, contrary
to the stated design goals (specifically, understandability
of the backend). In the example given above, four separate
source files are required to properly disable and re-enable
asynchronous IPC.

Magpie’s templating approach is at best only partially
successful. Code flow is preserved (the above example
notwithstanding), but the templated code is difficult to
read, and does not get significantly easier as one becomes
more familiar with the system. The templates are not
stand-alone: to understand the system one must also be fa-
miliar with the procedural-code generator with which the
templates communicate and, in some cases, the abstract
syntax tree containing the parsed data. Perhaps the best
proof of both the success and failure of Magpie is the fact
that after more than a year of use, many different templates
were successfully developed to accommodate changing re-
quirements, but the sole developer of new templates was
the implementor of Magpie.

III. A specification-based approach

The interface compilers discussed in the previous sec-
tions all use a procedural approach to perform code gener-
ation. That is, a program written in a procedural language
(commonly C or C++) examines an AST created by the
frontend and generates code in the target language, if the
compiler does not include a separate generator, or an in-
termediate representation, if it does. This approach man-
ages to be both too general-purpose and too inflexible: a
programmer wishing to modify the behaviour of the stub
code must become very familiar with interface-compiler in-
ternals, and must modify a nontrivial amount of code to
extend the system.

The use of a procedural language to write the genera-

A S T g e nG e n e r a t o rT e m p l a t e s D e c l a r a t i o n sP a r s e r A S T g e nP a r s e rT r e e w a l k
M a g p i e C u r r a w o n g

Fig. 5. Magpie and Currawong

tor section of the interface compiler is an obvious choice,
because the rest of the interface compiler is typically imple-
mented in a procedural language. However, a procedural
approach results in complicated, verbose generator code.
The core of an interface compiler is essentially a tree-to-
tree transformation. In this section, I demonstrate that
using a declarative language confers several benefits over
the standard approach, particularly in the areas of code
size, understandability, and extensibility. The design com-
prises a set of modifications and extensions to the Magpie
interface compiler, resulting in a new interface compiler
named Currawong.

A. Currawong and Magpie

Currawong replaces most of Magpie’s generator and tem-
plating sections, as shown in Figure 5. Magpie’s frontend
parser and generators are preserved. The intermediate and
backend layers are combined to form a declarative process-
ing layer. The output from this layer is essentially an AST,
so a final small stage walks the tree to produce output.

B. Procedures and declarations

As discussed above, interface compilers are complicated
at least partly because of the strong relationship between
the target language and compilers for that language – such
as C and the gcc compiler. In short, the specification of any
language mapping must necessarily conflate interface-level
details, such as the layout of data in memory, and language-
level details, such as the appropriate casts, bitwise shifting,
and logical operations required to create this layout. This
problem cannot be avoided completely – at some point,
we must speak the target language – but its impact on
generator extensibility can be minimised by separating the
levels of specification. Referring to the previous example:
if a given platform requires that parameters be marshaled
into a certain location in memory, it is plausible that one
may desire to change the marshal location of a given 64-
bit integer in an interface-defined function, but less likely
that one would wish to change the fact that, in C, the low-
order 32 bits of this word may be accessed using “theword
& 0xFFFFFFFF”.

A common response to the specification requirement has
been to perform exactly the separation described above.
The Flick interface compiler, for example, uses five separate
abstract representations for language-level and interface-
level requirements. However, these five abstract represen-
tations have been determined by the implementors of Flick.
They can, therefore, not be easily modified to accommo-

typedef unsigned int counter_t;

type counter_t (1, example.h:1)

(meta_type) = [’alias’]

(indirection) = [’’]

target (2, ?:?)

type unsigned int (backref)

Fig. 6. A simple C typedef and its AST representation

date level-spanning problems, and are thus inflexible: to
again refer to the parameter-passing example above, one
may make arbitrary changes at the level of determining
the names and types of parameters to be marshaled, but
the layout and organisation of parameters is only accessi-
ble at the lowest level, CAST, which essentially encodes a
C++ abstract syntax tree. Other interface compilers tackle
the same problem using a highly-stratified generator and
rely on the language features of their interface compiler’s
language to supply extension. For example, the IDL4 and
DICE compilers, written in C++, stratify their generators
into the generator proper and a smaller section that sepa-
rates messages into channels, allowing message order to be
changed through interface inheritance.

In the Currawong system, the generator applies a series
of transformations to a code template written in the tar-
get language in order to transform the template into an
appropriate stub function. The “meat” of the transforma-
tion system is specified declaratively in Prolog and, due to
the template, only the transformations necessary to cus-
tomise the template to a particular interface are specified.
These two characteristics combine to make the customis-
able aspects of the transformation system very compact
and understandable.

C. Type management

In order to compile an interface definition, it must first
be parsed and converted to an easy-to-manipulate form. In
the Magpie interface compiler, the primary data structure
is an abstract syntax tree produced by the frontend. An
example of this structure is shown in Figure 6, with the C
code that it represents. Magpie can make use of any type
declaration presented in its frontend and, therefore, types
defined in the interface definition file, and types defined in
any included C files, are interchangeable.

Representing Magpie’s AST in Currawong is a simple
matter of transforming the AST, producing idiomatic Pro-
log nested structures. An example is shown in Figure 7.
Some simplification may take place: AST nodes represent-
ing alias types (such as those defined by typedef in C)
include a direct reference to the target type of the alias
(strictly speaking, the “AST” is actually a directed acyclic
graph) but the converted representation does not. Node
attributes (meta type and indirection in this case) are
discarded or converted, and line number information is not
preserved. Nonetheless, this form of specification is very
powerful, because it allows one to use Prolog’s unification
facility in the expected way to perform pattern-matching.

type(alias(counter_t, name(unsigned int)))

Fig. 7. A simple C typedef, Prolog syntax

For example, all C typedef types may be matched using
the Prolog term type(alias(Name, Type)).

D. Specification language

The Currawong specification language is a declarative
representation of the generator present in other interface
compilers, such as Flick, IDL4, and Magpie. A generator
in the Currawong syntax is a series of declarations, each
one representing a single code transformation.

In general, a code transformation may be described as
consisting of three parts: a match rule that locates the
desired portion of code, a set of requirements which serves
to determine whether the code is correct with regards to
the transformation, and a transformation rule which may
be followed to transform the matched code and make it
satisfy the requirements. In Currawong, these three parts
are separated using a minor extension to Prolog syntax,
as per the example shown in Figure 8: a syntax marker
consisting of two colons separates the match rule from the
requirements. In other regards, the syntax is Prolog. In
the current experimental prototype, Currawong includes
its own interpreter for this language, which is essentially a
custom Prolog implementation with the above extension.
A future, more complete, version of Currawong will support
one or more open-source Prolog implementations, such as
SWI-Prolog or GNU Prolog, instead.

Matching of rules and requirements is performed using
the Prolog unification mechanism. A transformation is con-
sidered complete when, for each item matched by a match
rule, the corresponding set of requirements also matches.
Referring to the example in Figure 8, any set of parameters
is matched, and the parameter list is bound to the Prolog
variable P. Then list head is called, which ensures that
the first element of P is the parameter L4 Word t service.

If a match rule is encountered for which the correspond-
ing requirements do not match, code transformation is per-
formed. Code transformation proceeds as follows:

1. Take the first requirement from the list of requirements.
2. Find the corresponding transformation rule, which is
the rule whose functor starts with match and ends with
the functor of the requirement under consideration. The
corresponding transformation rule must have an arity one
greater than that of the requirement under consideration
– the final parameter is taken to be the transformed rule,
and all other parameters correspond.
3. Unify any free variables in the transformation rule. Re-
place the matched portion with the result generated by the
transformation rule.
4. Remove this requirement from the list.
5. Repeat this procedure until there are no more require-
ments.

Referring again to 8, if the paramter list does not con-
tain L4 Word t service as a first parameter, the list is

parameters(P) :: list_head(P,

parameter(’L4_Word_t’, ’_service’).

list_head([H|T], H).

make_list_head(List, H, Result)

:- Result = [H|List].

Fig. 8. An example of Currawong rule language

mutated by a call to make list head, and the AST is up-
dated.

Note that the match rule and requirements reside in the
same clause, on either side of the double-colon separator –
collectively named the match/requirements clause. How-
ever, the transformation rule is a separate clause. This is
because it is appropriate that the transformation rule, be-
ing far more general-purpose than the match/requirements
clause, reside in a separate system-wide library of manip-
ulation rules.

Given that Currawong parses a template and applies its
transformations to the template, there is a great poten-
tial for reduction of code size via elimination of boilerplate
code. In effect, Currawong statements act as a sort of as-
pect language for aspect-oriented programming (AOP)[11],
specifying transformations through matching. Prolog is an
ideal choice for an aspect language, because it is well-suited
to the types of tasks, specifically searching, that form a
large part of any aspect language.

IV. Examples

This section describes some examples for which a declar-
ative code-transformation approach is well-suited.

A. L4 notification mask

Many superficial changes to non-parameterised code can
be made simply by changing the code itself. For example,
asynchronous notification was recently added to NICTA
L4. It is undesirable for asynchronous notifications to ar-
rive during a synchronous IPC, so they should be disabled
prior to the IPC and re-enabled subsequently, as discussed
in Section II-C. An example Currawong implementation
is shown in Figure 9. Although this declaration effectively
generates code to manage asynchronous IPC, it is essen-
tially a correctness check, and can be used as such.

It is worthwhile to compare the declarative specification
with the implementation of the same functionality in Mag-
pie (Figure 3). In Magpie the code is distributed over sev-
eral templates, including “hooks” (the run() command) in
the base template, but the Currawong implementation has
the form of an aspect in the AOP sense: both the base code
and the aspect are well-separated, and significant changes
may be made to the base code without any knowledge of
the asynchronous support. In fact, the sorts of changes that
would require knowledge of the asynchronous IPC support
are those that would require rewriting the support anyway,
such as a decision not to use L4 Call() in the base code.

context(expression(call(L4_Call, _)),

Before, After) ::

list_contains(Before, expression(

equals(Var, call(set_notifymask(0))))),

list_contains(After, expression(

call(set_notifymask(Var)))).

Fig. 9. A currawong declaration: managing asynchronous IPC

1 function(iguana_pd_pypd, _, Body) ::

2 % Ensure that we declare the static.

3 list_contains(Body, expression(typeinst

4 (’static uintptr_t’, ’mypd’, 0))),

5

6 % Return early if the static is

7 % initialised.

8 context(expression(call(L4_Call)),

9 Before, After),

10 list_contains(Before, if(expression(

11 notequals(mypd, 0),

12 expression(return(mypd)))),

13 % Initialise the static after the call.

14 list_contains(After, expression(

15 equals(mypd, __retval))

Fig. 10. An interface-specific optimisation rule

B. Interface-specific optimisations

The previous examples demonstrated flexible creation of
generic interface compilers. However, not all interfaces are
the same, and some may benefit from interface-specific cus-
tomisations – optimisations in particular.

A simple example occurs when caching. The Iguana L4
OS personality separates threads into protection domains,
where two threads in disjoint protection domains may not
share data. A thread’s protection domain identifier is rep-
resented by a nonzero integer which threads may obtain
using the iguana pd mypd() function. This integer does
not not change over the thread’s lifetime. It might make
sense, then, to include a declaration to perform caching
on the iguana pd mypd interface function, which returns a
thread’s protection domain identifier. Such an optimisa-
tion rule is shown in Figure 10. This rule declares a static
variable to cache the result of an IPC call (lines 3 and 4),
checks to see if it can return the static before making the
call (lines 8 to 12), and sets the static to the result of the
call afterwards (lines 14 and 15). The Prolog representa-
tion of the C code is somewhat verbose – a possible solution
to this aesthetic problem is discussed in Section V.

V. Related work

The description of Currawong above includes an exam-
ple of interface-specific optimisation in C. Approaches for
non-microkernel-based systems have focused less on per-
interface optimisation and more on per-language optimi-
sation. The Concert Signature Representation[12] does
not make use of an explicit interface definition language,

but allows definition of an interface using the target lan-
guage’s own definition sub-language (for example, func-
tion prototypes in C) with extensions. It then relies on
a declarative mini-language to specify the type and loca-
tion of each parameter, in a similar fashion to Currawong’s
declarative language. The experimental interface generator
Mockingbird[13] arrives at a similar solution in a different
way. Recognising that the ideal presentation of an inter-
face in C++ is very different to an ideal presentation of the
same interface in Java, Mockingbird allows programmers to
hand-define the ideal interface in both languages, and en-
sures correctness by compiling both interfaces to its own
unambiguous internal interface definition language and en-
suring that the internal representations for both interfaces
are the same.

Microkernel-focused systems concentrate more on per-
interface customisation. Ford et al. [14] discuss
the importance of separating interface presentation (the
programmer-facing side of the interface; essentially the
stub code signature) from the interface contract (the data
that must be transferred) and describe a small specification
language to customise the presentation for an interface gen-
erator for the Mach microkernel.

Currawong is not the first design to make use of decla-
rations to perform program modification, known as logic

metaprogramming. The TyRuBa system[15] is a tool for
aspect-oriented programming in Java (a weaver) in which
aspects are specified in a variant of Prolog. The authors
claim that this approach allows easy extensions of the as-
pect language. An interesting feature of TyRuBa not cur-
rently incorporated into the Currawong design is the ability
to embed portions of the target language directly into as-
pect declarations. Judicious use of such a feature could
simplify blocks of code with few external dependencies,
such as the optimisation example given above. If the tar-
get code were parsed by a Currawong implementation, it
could also simplify examples such as the first one, allowing
all rules to be written in plain C.

VI. Limitations and future work

As mentioned above, information is lost when type infor-
mation is converted from the AST representation supplied
by the parser to Prolog-style declarations. This informa-
tion, which includes line number information, may be use-
ful when reconstructing modified files. This information
may be restored in several ways. Perhaps the most obvious
is simply to store the information as additional attributes
in the data structure representing a Prolog atom or node.
The extra information could then be accessed using built-in
predicates.

Haeberlen et al.[16] implemented a number of optimi-
sations when designing the L4-specific interface compiler
IDL4. While some of these (such as the direct-stack trans-
fer) are architecture-specific, it would be informative to
implement these optimisations in the framework of Curra-
wong, to determine which are feasible in that context. Al-
though I suspect the completed Currawong implementation
to run relatively slowly in its first incarnation, the runtime

speed of the generated stub code should be entirely depen-
dent on the input passed to Currawong – transformations
performed inside Currawong should not have an impact on
stub performance.

Although most of the sections necessary to implement
the Currawong extensions to Magpie are complete, some
implementation work is still required to produce a working,
testable interface compiler.

VII. Conclusion

Interface compilers, particularly interface compilers for
microkernel-based systems, have some unusual require-
ments for which traditional compiler techniques are not
particularly well-suited. The requirement to support a
large array of targets, and to do so using a relatively high-
level language, creates unique problems and has produced
a variety of novel solutions. The use of a declarative lan-
guage, combined with aspect-oriented techniques, has the
potential to reduce the complexity and overall size of an
interface compiler generator, and is worthy of further ex-
ploration and implementation.

References

[1] Joel Spolsky, “The law of leaky abstractions,”
http://www.joelonsoftware.com/printerFriendly/-
articles/LeakyAbstractions.html, 2002.

[2] Object Management Group, “CORBA 3.0.3, Common Object
Request Broker Architecture (Core Specification), 2004-03-01,”
2004.

[3] Microsoft Corporation and Digital Equipment Corporation, The
Component Object Model Specification, 1995.

[4] Sun Microsystems, “Java beans: A component architecture for
Java,” 1996.

[5] Open Software Foundation and Carnegie Mellon University,
Mach 3 Server Writer’s Guide, Jul 1992.

[6] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lind-
strom, “Flick: A flexible, optimizing IDL compiler,” in SIG-
PLAN Conference on Programming Language Design and Im-
plementation, 1997, pp. 44–56.

[7] Mike Accetta, Robert Baron, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young, “MACH: A new kernel
foundation for UNIX development,” Tech. Rep., Carnegie Mel-
lon University, Computer Science Dept., Pittsburgh, PA, USA,
1986.

[8] Jochen Liedtke, “On micro-kernel construction,” in SOSP 1995,
Copper Mountain, CO, USA, Dec. 1995, pp. 237–250.

[9] Gernot Heiser, “Secure embedded systems need microkernels,”
in ;login:, USENIX, Dec. 1995.

[10] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compil-
ers: principles, techniques, and tools, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1986.

[11] Gregor Kiczales, John Lamping, Anurang Mendhekar, Chris
Maeda, Christina Lopes, Jean-Marc Loingtier, and John Irwin,
“Aspect-oriented programming,” ACM Comput. Surv., vol. 28,
no. 4es, pp. 154, 1996.

[12] Joshua S. Auerbach and James R. Russell, “The Concert Sig-
nature Representation: IDL as intermediate language,” ACM
SIGPLAN Notices, vol. 29, no. 8, pp. 1–12, 1994.

[13] Joshua S. Auerbach, Charles Barton, Mark Chu-Carroll, and
Mukund Raghavachari, “Mockingbird: Flexible stub compila-
tion from pairs of declarations,” in International Conference on
Distributed Computing Systems, 1999, pp. 393–402.

[14] Bryan Ford, Mike Hibler, and Jay Lepreau, “Using annotated
interface definitions to optimize RPC,” in Symposium on Oper-
ating Systems Principles, 1995, p. 232.

[15] Kris De Volder, “Aspect-oriented logic meta programming,” in
Meta-Level Architectures and Reflection, Second International
Conference, Reflection’99, Pierre Cointe, Ed. 1999, vol. 1616
of Lecture Notes in Computer Science, pp. 250–272, Springer
Verlag.

[16] Andreas Haeberlen, Jochen Liedtke, Yoonho Park, Lars Reuther,
and Volkmar Uhlig, “Stub-code performance is becoming impor-
tant,” in Proceedings of the 1st Workshop on Industrial Expe-
riences with Systems Software (WIESS), Berkeley, CA, 2000,
USENIX Association.

