The SawMill Multiserver Approach

Alain Gefflaut Trent Jaeger Yoonho Park
Jochen Liedtke* Kevin Elphinstone* Volkmar Uhlig*
Jonathon E. Tidswell Luke Dellerf Lars Reuther?

IBM T. J. Watson Research Center
Hawthorne, NY 10532

Email: {sawmill @watson.ibm.com}

1 Introduction

Multiserver systems, operating systems composed from a
set of hardware-protected servers, initially generated sig-
nificant interest in the early 1990's. If a monolithic op-
erating system could be decomposed into a set of servers
with well-defined interfaces and well-understood protec-
tion mechanisms, then the robustness and configurabil-
ity of operating systems could be improved significantly.
However, initial multiserver systems [4, 14] were ham-
pered by poor performanceand software engineering com-
plexity. The Mach microkernel [2] base suffered from a
number of performance problems (e.g., IPC), and a num-
ber of difficult problems must be solved to enable the con-
struction of a system from orthogonal servers (e.g., uni-
fied buffer management, coherent security, flexible server
interface design, etc.).

In the meantime, a number of important research re-
sults have been generated that lead us to believe that a
re-evaluation of multiserver system architecturesis neces-
sary. First, microkernel technology has vastly improved
since Mach. L4 [13] and Exokernel [8] are two recent
microkernels upon which efficient servers have been con-
structed (i.e., L4Linux for L4 [11] and ExOS for Exoker-
nel [12]). In these systems, the servers are independent
OSes, but we are encouraged that the kernel and server
overheads, in particular context switches overheads, are
minimized. Second, we have seen marked improvements
in memory management approaches that enable zero-copy
protocols (e.g., fbufs [6] and emulated copy [3]). Other
advances include, improved kernel modularity [9], com-
ponent model services [7], multiserver security protocols,
etc. Note that we are not the only researchers who believe
it istime to re-examine multiservers, as a multiserver sys-
tem is also being constructed on the Pebble kernel [10].

In addition, thereisagreater need for multiserver archi-
tectures now. Consider the emergence of a variety of spe-
cialized, embedded systems. Traditionally, each embed-

*Faculty of Informatics, Universitat Karlsruhe, Germany

tSchool of Computer Science and Engineering, University of New
South Wales, Australia

¥Department of Computer Science, Technische Universitat Dresden,
Germany

ded system includes a specialized operating system. Given
the expected proliferation of such systems, the number
of operating systems that must be built will increase sig-
nificantly. Tools for configuring operating systems from
existing servers will become increasingly more valuable,
and adequate protection among servers will be necessary
to guard valuable information that may be stored on such
systems (e.g., private keys). Thisis exactly the motivation
for multiservers.

In this paper, we define the SawMill multiserver ap-
proach. This approach consists of: (1) an architecture
upon which efficient and robust multiserver systems can
be constructed and (2) a set of protocol design guidelines
for solving key multiserver problems. First, the SawMill
architecture consists of a set of user-level servers execut-
ing on the L4 microkernel and a set of servicesthat enable
these servers to obtain and manage resources locally. Sec-
ond, the SawMill protocol design guidelines enable sys-
tem designers to minimize the communication overheads
introduced by protection boundaries between servers. We
demonstrate the SawMill approach for two server systems
derived from the Linux code base: (1) an Ext2 file system
and (2) an IP network system.

The remainder of the paper is structured as follows. In
Section 2, we define the problems that must be solved
in converting a monolithic operating system into a mul-
tiserver operating system. In Section 3, we define the
SawMuill architecture, which defines the types of compo-
nents from which a multiserver is to be constructed. In
Section 4, we outline guidelines for designing protocols
that satisfy the multiserver requirementswhile minimizing
communication overheads. In Section 5, we demonstrate
some of these guidelines in the file system and network
system implementations.

2 Multiserver Issues

An effective multiserver system must: (1) protect its
servers from errors or malice in other servers; (2) im-
plement coherent system semantics; and (3) incur mini-
mal performance overhead. We define these requirements
more precisely in this section.

2.1 Protection

Multiserver systems must preserve the integrity of each
server’'s execution (i.e., protect servers from one another)
and protect the integrity and secrecy of the data processed
by each server (i.e., ensure the protection of user data).
Specifically, welist the following protection requirements:

¢ Protect the execution integrity of each server:

— Prevent modification of another server’s code

— Prevent modification of another server’s’ con-
trol data’ (i.e., data that is interpreted for exe-
cution, such as the stack)

— All code and control data must only be ob-
tained from atrusted source

e Protect the secrecy and integrity of user data:

— Prevent leakage of data to unauthorized sub-
jects

— Prevent modification of data by unauthorized
subjects

— Protect data from accidental modification by
other servers

The first set of requirements prevents malicious or
buggy servers from crashing other servers (i.e., protects
server integrity). A malicious or buggy server can only
cause another server to crash if it modifies the data inter-
preted by the server inits execution: code, stack, and’ con-
trol’ data(i.e., memory referencesand meta-data). We dis-
tinguish between control data, the data interpreted by the
server during execution, and user data, the data being be-
ing transferred from the users to the devices or vice versa
via the operating system. The server must both obtain its
code, stack, and control data from a trusted source and
limit modification of this data to verifiably correct pro-
tocals (e.g., Clark-Wilson's well-formed transactions for
transformation procedures [9]).

The second set of requirements are designed to protect
the user data being processed by the server. In general,
there are two types of requirements embodied here. The
first two requirements embody traditional access control,
including control over overt and covert channels, in gen-
era. The third requirement implies that user data trans-
ferred among servers must be protected effectively from
accidental server modification. That is, as user datais be-
ing transferred from one server to another, there must be
some protocol to prevent the first server from modifying
this user data.

2.2 Semantics

In general, the problem of decomposing a monolithic oper-
ating system into a multiserver operating system is shown
inFigure 1. Inamultiserver system, the monolithic system

is implemented by a set of user-level system tasks upon a
microkernel (not shown). The combination of these tasks
define the semantics seen by the user tasks. We define how
amultiserver must preserve these semantics below.

e Each system call in the monalithic system must be
supported by one or more serversin the multiserver
system .

e Each system call must be processed as restricted by
its atomicity requirements.

e Any server must be able to obtain and enforce sys-
tem policies (e.g., for security, resource manage-
ment, €tc.).

First, the decomposed system must be able to respond
to al the same system calls as the monolithic system.
Thus, the multiserver system has the same functionality
as the monoalithic system. Second, the atomicity require-
ments of system calls in the monolithic system must be
enforced in the multiserver system. If system call data
is distributed among multiple servers, concurrency control
mechanisms must account for all those servers to prevent
race conditions. Third, a coherent system composed of a
set of serversrequiresthat any server be able to obtain and
enforce system-wide policies, such as access control and
resource management.

2.3 Performance

The goal of the SawMill multiserver design is to achieve
the protection and semantic reguirements with no signif-
icant performance degradation. Maintaining performance
in a multiserver system is non-trivial. Consider Figure 1,
in which asingle-threaded, monolithic operating systemis
broken into two single-threaded system tasks. The follow-
ing additional operations may result due to this decompo-
sition:
e |PC Frequency:
— IPCs(i.e., context switches) replace procedure

cals

— Additional IPCs may be necessary to maintain
the consistency of replicated data

— Additional IPCs may be necessary to synchro-
nize access to shared data

— Additional IPCs may be necessary to negotiate
resource allocation

— Cache and TLB locality are reduced by addi-
tional context switches

e |PC Overhead:

LIn an embedded system, only a subset of the system calls may be
necessary, so only these must be supported.

System

Control Data

Code

User Data

——————————————————————

System Task
/(Code Control Data
User Data

System Task

g Code Control Data
User Data

Figure 1: Decomposing a monolithic operating system involves distributing system functionality and meta-data into pro-
tection domains. Introducing protection domain boundaries may introduce communication, copying, mapping, and consis-

tency management overheads which must be mitigated.

— Parameters must be marshalled and unmar-
shalled between servers

— Parameters need to be transferred between the
servers

First, each procedure call that crosses a server bound-
ary in now convert to an IPC, which consists of context
switching, marshalling, unmarshalling, copying, and map-
ping overheads. Clearly, the number of 1PCs should be
minimized, and the overhead of each IPC and related func-
tionality must be minimized. Also, depending on the pro-
tocol chosen, additional IPCs may be necessary to main-
tain data consistency, synchronize access, and obtain re-
sources. Second, data may need to be transferred across
these protection boundaries. While control data transfer
can be limited to effective partitioning and caching, sig-
nificant amounts of user data will be transferred through
the servers. This data may be copied, mapped, or shared
depending on the protection and protocol semantics.

3 SawMill Architecture

The SawMill architecture for multiserver operating sys-
temsis shown in Figure 2. The SawMill architecture con-
sists of three types of components:

e System servers: Thesetasks providethe main func-
tionality of the operating system (e.g., network sys-
tems, file systems, etc.)

e Ubiquitous Services. These components provide
general functionality that may be of use to any sys-
tem server (e.g., synchronization, access control,
naming, communication, etc.).

e Resource Servers: These servers manage the core
resourcesfor distribution to the system servers(e.g.,
memory, |RQs, security policy, etc.).

System server code is augmented by libraries, caled
ubiquitous services, that provide multiserver-aware man-
agement of system data. In general, a ubiquitous service
obtains resources from the appropriate resource servers

which control the distribution of resources among servers.
Ubiquitous services manage these resources locally (e.g.,
caches) to limit communication overhead.

The basic protocoal is as follows for memory manage-
ment [1]. First, the server requests that its memory ser-
vice library obtain access to its dataspaces (i.e., mem-
ory objects). The memory service library then opens
the appropriate dataspaces (i.e., similar to memory ob-
jects) on the appropriate memory servers (i.e., resource
server). When the server attempts to access this mem-
ory, the page fault is directed to memory service library
which requests that appropriate memory server servicethe
page fault. Notice that memory servers may be stacked,
such that a memory server may need to obtain the page
fromits memory server, and so on. Similar resource fault-
ing approaches are also used for obtaining access control
data, names, tasks, and mount points. Other ubiquitousi-
braries provide multiserver-specific functionality, such as
Flick’s cross-domain procedurecall stubs[7] and synchro-
nization.

4 SawMill Protocols

In order to build an efficient multiserver, system protocols
must designed to minimize IPC frequency and overhead
(see Section 2.3). We identify these principles for design-
ing efficient multiserver protocols:

e Make system calls directly to the processing server
e Partition server-specific control data

e Share dataaswidely as possible

First, to reduce the number of IPCs that are necessary
to implement a performance-critical system call, clients
should communicatedirectly to the serversthat processthe
system call, where possible. Second, server control data
should be partitioned where possible. In cases, where the
datais shared (i.e., cached read-only in multiple servers),
few update messages should be necessary (i.e., few writes
or weak consistency). Third, data sharing should be uti-
lized as widely as protection requirements can allow. In

System

S Code

Control Data

User Data

» System Server
I

System

System Server

Code Control Data

Ubiquitous Services User Data

Code Control Data

Ubiquitous Services User Data

Resource Server

Distribution Mechanism

Figure 2: The SawMill approach enables the decomposition of monolithic operating systemsinto individual system servers
where ubiquitous services manage system data locally in a multiserver environment. The ubiquitous services obtain the
system data from resource servers which also control the distribution of such resources. Thus, a coherent system can be

constructed from digjoint servers.

particular, the mapping of user data can be avoided in sys-
tem servers, because the same buffers can be reused for the
same user. Also, it may be desirable to share control data
read/write between driversand servers, aslong as each can
prevent themselves from crashing due to errors or malice.

5 Somelmplementation Details

We now examine some interesting examples of applying
these conceptsto theimplementation of thefile system and
network system. This implementation is based on Linux
2.2.1 code and preserves Linux semantics.

5.1 Protocol Options

First, each system protocol should be designed to require
asfew IPCs as possible. Consider the protocol options for
a multiserver file system in Figure 3. The first protocol
simply replacesthe inter-server procedure callswith | PCs.
Inthiscase, the VFSiscalled on open to obtain afile han-
dle. On subsequent read/write cals, the client calls
the VFS which authorizes the handle and forwards autho-
rized requests onto the PFS. In the second protocol, the
VFS obtains a handle from the PFS that the client can use
on the PFS directly. Therefore, only the open cal is sent
tothe VFS, but there are potentially severa 1PCs between
the VFS and PFS for name resolution. The third proto-
col option considers the VFS only as a store for mount
point and access control information. This is typica of
the resource faulting protocols described in the previous
section. Inthis case, aclient emulation library obtains the
PFS-mount point mapping, so it only needsto call the VFS
for each new mount point it uses 2. Also, the PFS caches
access control data, so it only needsto call the VFS when
arequest does not hit in the access control data cache.

2An exception is on the processing of symbolic links between file
systems, but these can be handled by having each PFS provide the client
with the PFS to which its part of the path resolves.

In the normal case, the third option will result in fewer
IPCs, but, due to the complexity in modifications neces-
sary to implement it, the second option is being used cur-
rently. Overhead for read/write is the same for both the
second and third case, however (see Section 6).

For the network system, an option analogous to the
third option is implemented. In this option, a network
manager performs the role of the VFS in naming stacks
and devices and providing access control information. The
network stack correspondsto a PFS.

5.2 Data Partitioning

Fortunately, a significant amount of control data can be
partitioned between the serversin both the file system and
the network system. However, user data must flow (not
necessary be copied) through the serversto reach its des-
tination, so it cannot be partitioned. In the file system,
the main control data are the superblocks and the inodes.
Superblocks change very infrequently, so caching is not
a problem. Inodes are provided by the driver and used
read/write by both the PFS and the VFS. However, the in-
ode data used and updated by the VFS and PFS are or-
thogonal. So, the master copy is stored by the PFS, and
the VFS cachesits copy and sends updatesto the PFS. The
PFS does not send updatesto the VFS. If the third protocol
option were used, little or no sharing of inode data would
be necessary between the VFS and PFS.

A problem is that the buffer cache is shared among the
PFSs in Linux. Thus, one PFS could disrupt the inode
data of another PFS. Clearly, in order to prevent this, a
trusted entity (either abuffer cache server or adriver) must
partition the buffer cache among PFSs. Since the buffer
cache usage of the different PFSs may vary over time, this
server will need significant resource management abilities.
Currently, our decomposed PFS and driver share their own
separate buffer cache, but thisis still an open problem.

The network system control data includes device struc-
tures, buffer lists, and sk buf £s. Since the device struc-
ture is used read-only by the network stacks, the drivers

Option 1 Option 2 Option 3

User Task User Task User Task

open read/write oie"/i

VFS VFS

i) S
lookup 4 1 readiwrite ~
:

mount fault ”,”
o open
Y2

read/write
read/write

VFS

AR

lookup *+ "~

PFS N

access fault < "~

PFS | PFs

read made* [} read inode ‘v é read inode * ‘A

Driver

Driver Driver

Figure 3: The communication requirements for three file system protocol options. Dashed |PCs are optional. For example,
a PFS lookup may not be necessary because the appropriate inodes may be present in the directory cache.

maintain the master copy. The network stacks get a copy
when they open the device, and the driver notifies them
of any changes. There are function pointers in the struc-
ture, so these pointer arelocalized at load time. The buffer
lists are partitioned between the driver and the stack. For
example, when a stack wishes to send a packet, it sends
thedriver areferenceto an sk buf £ which the driver can
gueue on its own list. Thereis no sharing of buffer lists
between the stack and driver. sk buf fs and packet data
are shared as discussed below.

5.3 /0 Management

There are two important issues in 1/0 management: (1)
the protection boundaries that the 1/0O data crosses (user-
system or server-server within the system) and (2) the type
of the data being transferred (user or control data). First,
in atraditional UNIX system, such as Linux, datais typi-
cally copied between the user and the system. In a multi-
server system, we have this type of data transfer and data
transfer between servers in the system. System servers
originally shared this data in the monolithic system , so
sharing semantics are more natural. Second, we must con-
sider the protection requirements of the type of data that
is being transferred. Protection requirements permit user
data to be shared among multiple servers, as long as suffi-
cient copy semantics are enforced between the user and
system (some form of copy-on-write), but servers must
protect themselves from the generation of illegal control
data

First, user data transferred between the user and system
is transferred with copy semantics. However, user data
buffers are shared among the servers. In effect, the system
servers are originators (in the fbufs sense [6]) of the data,
so they maintain write access until the data is transferred
to the user or to an untrusted server. Then, a decision
must be made whether to downgrade the servers' access
to the data to read-only (e.g., using emulated copy [3] or

fbuf semantics) and apply copy-on-write for the user, per-
mit the serversto maintain read-write access (e.g., volatile
buffers) with copy-on-write for the user, or copy on trans-
fer. Unfortunately, neither emulated copy or fbuf seman-
tics work for the Linux file system. Buffer cache buffers
may not be aligned as necessary for emulated copy and
Linux copy semantics does not enable the use of fbufs. At
present, datais copied between user tasks and the SawMill
Linux system servers, although further investigationis on-
going.

For control data, each server must trust the originator
of the control data it uses to specify the necessary data,
but it must ensure that the control datathat it uses does not
cause it to crash. For example, the network stack speci-
fies sk buf fs for the network driver which the network
driver must assume refer to the data that it is to send (if
it is within the shared user data region). However, if the
sk_buff is erroneous (i.e., refers to an illegal memory
location), the network driver must catch this. In this case,
we prefer an optimistic approach where the network stack
and driver share sk buff data and the driver uses the
sk_buff directly. Any error in the sk buff either re-
sultsinthewrong data being sent (which the network stack
could arrange regardless) or resultsin anillegal page fault.
Since the driver's page fault handler is a loca thread, it
can recover the driver thread to a consistent state on such
anillegal page fault.

6 Performance Summary

Initial performance results on the file system are shown
in Figure 4. We compare SawMill Linux 2.2.1, L4Linux
2.2.1 (trampoline version), and Linux 2.2.1 systems using
the 10Zone read benchmark. All the data is from a 266
MHz, Pentium Il with a512KB L2 cache and a 32K B split
L1 cache. The nature of the benchmark is that all the read
operations hit in the file cache, so the time shown consist

450

B Linux
B sawmill
|| C4Linux

Throughput (kB/sec x 1000)

128 256 512 1024
File size (kB)

Figure 4: Initial performance comparison between mono-
lithic Linux, SawMill Linux, and L4Linux (trampoline
version)

of around-trip communication and a copy.

For each 4KB record read, the SawMill transaction
times are 3.2 us slower than monolithic Linux. Per record
read, this amounts to about 800 cycles difference. Over-
al, for 64KB reads, the SawMill throughput is 305,000
KB/swhile monolithic Linux throughput is 401,000 KB/s.
Since the same copy routinesare used in al cases, the dif-
ference is attributable to communication overhead differ-
ences. The performance of the L4Linux trampoline ver-
sion is as expected: it should be slower than SawMill
Linux because of the extra system call to implement the
trampoline.

However, we know that SawMill performance can be
improved in two ways. (1) our Flick stubs can be opti-
mized by writing the parameters directly into the registers
which we estimate will save 200-300 cycles based on a
hand-coded example and (2) we can use the Pentium I1-
specific fast sysenter/sysexit instructions which will save
100-150 instructions 2. Thus, we expect that we can save
another 1.25to 1.75 us on the multiserver communication
time. Also, modifying Flick to use L4's scatter-gather will
reduce the number of communications necessary to trans-
fer afile. Thus, the cost of communication can be amor-
tized for larger reads. We are working on scatter-gather
currently and plan to have numbersfor larger record sizes
by the publication deadline.

7 Conclusions

In this paper, we describe the SawMill approach to con-
structing multiserver operating systems. This approach

3Note that a round-trip IPC requires two system calls vs. one system
call for amonolithic Linux read.

consists of a set of services and design guidelinesthat en-
able the development of a multiserver from an existing
code base. We demonstrate this approach on the Linux
operating system by building multiserver file and network
systems. The main complexity lies in the efficient and
secure management of data over the disjoint servers, al-
though we have a number of potentially promising ap-
proaches. Also, initial performance results indicate that
the multiserver overhead is small on the file system and
can be further optimized to reduce the impact of multi-
server protection barriers. Soon, we will have the network
system performance measurements.

References

[1] M. Aron, J. Liedtke, Y. Park, K. Elphinstone, and T. Jaeger.
Implementing and using VM diversity. Unpublished report
available at URL http://www.research.ibm.com/sawmill/.

[2] R. V. Baron et al. Mach Kernel Interface Manual, 1990.
Unpublished manuscript from the School of Computer Sci-
ence, Carnegie Méellon University.

[3] J. C. Brustoloni and P. Steenkiste. Effects of buffering se-
mantics on 1/O performance. In Proc. OSDI’ 96, 1996.

[4] T.Bushnell. Towards a new strategy for OS design, 1996.
At URL http://www.gnu.ai.mit.edu/software/hurd.

[5] D.D.ClarkandD. R. Wilson. A comparison of commercial
and military computer security policies. In Proc. of IEEE
Symp. on Security and Privacy, 1987.

[6] P. Druschel and L. Peterson. Fbufs: A high-bandwidth
cross-domain transfer facility. In Proc. SOSP'93, 1993.

[7] E. Eide, K. Frei, B. Ford, J. Lepreau, and G. Lindstrom.
Flick: A flexible, optimizing IDL compiler. In Proc.
PLDI’97, 1997.

[8] D. Engler, F. Kaashoek, and J. O’ Toole. Exokernel: An
operating system architecture for application level resource
management. In Proc. SOSP’ 95, 1995.

[9] B. Ford et al. The Flux OSKit: A substrate for kernel and
language research. In Proc. SOSP' 97, 1997.
[10] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silber-

schatz. Building efficient operating systems from user-level
components in Pebble. In Proc. USENIX 99, 1999.

[11] H. Hartig, M. Hohmuth, J. Liedtke, S. Schonberg, and
J. Wolter. The performance of p-kernel-based systems. In
Proc. SOSP'97, 1997.

[12] M. F. Kaashoek et al. Application performance and flexi-
bility on exokernel systems. In Proc. SOSP' 97, 1997.

[13] J. Liedtke. On u-kernel construction. In Proc. SOSP' 95,
1995.

[14] J. M. Stevenson and D. P. Julin. Mach-US: UNIX on
generic OS object servers. In Proc. USENIX' 95, 1995.

