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Abstract

The increasing dependence of modern society on information systems increases the need for
secure operating system kernels. Formal methods offer a way to achieve such high-level
security, however they require a significant investment of time, and are not well suited for
large kernels such as that of Linux. p-kernels offer an alternative which is both elegant, and
possibly small enough to make formal specification tractable. The L4 Pilot project aims to
investigate various approaches towards the formalisation of the L4 p-kernel and evaluating
its feasibility.

In order to make formal verification of a system possible its behaviour, functionality and
external interface must be clearly mapped out and understood. This thesis concerns the
creation of a formal model of the L4 “Pistachio” API using the B Method.
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Chapter 1

Introduction

1.1 Aims
To:

e produce a formal model of the L4 API based on L4 “Pistachio” using the B Method;
e gain a very thorough understanding of the L4 u-kernel from a functional perspective;

e identify potential faults and shortcomings that may be useful to current implementers,
and any future formal verification of L4;

e create a solid starting point for the continuation of the L4 Pilot project.

1.2 Operating System Kernels at a Glance

When referring to a “kernel” of an operating system we usually think of the core of the system,
which the rest is entirely dependent on. This is an apt simplification.

The kernel [20] represents the part of the operating system that has complete access to every-
thing inside a computer at the lowest level permitted by hardware. While it can grant this
privilege onto other code fragments (such as device drivers), the responsibility for interaction
with the hardware lies with the kernel. At the same time, the kernel must allow programs
running within the operating system to utilise the hardware.

Needless to say, this responsibility is a very large cause for concern from a security standpoint.
For example, today’s hard drives have no concept of users on the system and who has access
to what. This implies that should any program gain full access to hardware for any reason, it
can access all data on the hard drive. When a user level program achieves such access rights
by utilising a fault in the kernel, it is known as a local exploit.

The process of design and development of operating systems is an eternal struggle between
flexibility and control.



1.3 pu-kernels

Given the above security concerns, much work goes into making sure such breaches do not
happen. However, most modern operating systems use monolithic kernels, where a large
amount of functionality, device drivers, networking, etc. are included. This means there is a
lot of code that runs with full privileges, written by many people over a long period of time.
Indeed, in 1999, the Linux kernel had approximately 350 people working on it [15]! While it
can be argued that the large amount of people looking and working on the kernel are more
likely to discover possibilities of exploitation, the sheer amount of code they have to secure,
while hundreds of other people work on it is terrifying. In fact, the current Linux kernel
source code is approximately 30Mb [11]!

These are the very concerns that drove the computer science community into developing a
concept called p-kernels [14]. The basic aim of a p-kernel is to decrease the amount of code
running with full privileges to the bare minimum. The smaller (relative to monolithic kernels)
amount of code makes securing it orders of magnitude easier. The price is that abstractions
must be envisioned for hardware-interfacing programming, such as device drivers. This takes
the form of increased complexity, decreased performance, or worse, both. Additionally, just
what is the bare minimum remains a hotly debated topic [13].

1.4 L4 Overview

The L4 p-kernel remains true to the initial vision of supplying only that which is essential,
while incorporating many optimisations discovered on the long path of research in p-kernels.

It essentially provides the following [12]:
e Address spaces
e Threads (privileged, kernel and user)
e Fast, Synchronous Inter-Process Communication (IPC)
e Basic scheduling
e Memory ownership management (granting, mapping)
e Core machine resource management (such as Floating Point Units)
e Core machine control (CPU voltages etc.)

e Symmetric Multi-Processor (SMP) support

Experiments running Linux on L4 have shown only a 4% performance penalty over normal
Linux kernels [6], concluding that L4 is indeed fast enough for mainstream acceptance.



1.5 The B Method at a Glance

Various formal methods exist at present. Essentially, they allow one to express the behaviour
of a program (or system) in abstract, mathematical terms, and therefore allow proof that
the model is consistent (not self-contradicting). These models can then be implemented with
confidence. Alternatively, some attempt to prove things using already existing code as input.
However, no method, formal or otherwise, can guarantee correctness, i.e. that the model does
exactly what the creators want it to do. For that, a human is needed (or a mind-reading
computer).

The B Method, developed by Jean-Raymond Abrial [1], is a system of formal development
from the initial high-level specification all the way to implementation via a process called
refinement. It is one of the few formal methods to do so. The idea is to abstract away
the implementation and concentrate on pure functional requirements at the top level. Then,
with each refinement step, provide more information on how exactly the system fulfils those
requirements, until enough information exists to implement the system. Each refinement step
requires proof of consistency with the previous step.

Having only functionality at the top level allows one to easily evaluate what the system will be
doing without getting bound up in implementation constraints (and thus make the verification
of correctness much easier). At the same time, the refinement path towards implementation
can be modified without any change to the abstract model.

Furthermore, by utilising the facilities contained within the B Toolkit [2] it is possible to verify
the correctness of the top-level specification by animating it. In this mode, the user becomes
the implementation of all non-deterministic or undefined operations/sets. For example: an
operation which factors a composite number can be defined as returning any two numbers
which, when multiplied yield the supplied number. The Animator will ask you for the two
numbers, then check whether they are indeed factors, then the animation will proceed. Once
the system behaves the way one wants it to, one can then safely proceed to refinement and
implementation.

It is important to note the difference between using the B Method and system’s such as
Isabelle/HOL [17]. While the latter allows a completely free-form way of specification, the B
Method provides a ready-made framework. This means that starting a development with B
is much easier, but comes at the price of decreased flexibility.

1.6 Motivation: APIs, Why We Need Them and Why Bother?

The Application Programming Interface (API) is a crucial part of any system, through which
programmers may control and interact with it. Specifically, it is an abstraction of the inner
workings of the system (which allows people who may have no interest in how ezactly the
system works to use it). For an operating system kernel, it is yet more. Since the kernel runs
in privileged mode and programs written by external programmers generally do not, it is also
the only place through which unprivileged data is transferred into privileged mode. Most
security checks on such data must therefore occur at the API level, so that internal system
processes can be performed with confidence. For example: there will be an API call for a



thread to kill another, but will have check if the thread may indeed kill others (and that the
thread does not kill itself), which will then call an internal operation which will perform the
actual kill. The person writing the latter does not need to concern him /herself with security.

Given its importance, one would expect any operating systems verification project to at least
give some thought to the API. As seen in Related Work, this isn’t always the case. The API
represents a model of the system as seen by a process being executed and, as such, what the
system actually does (whereas the implementation is responsible for how it does it).

I believe it is significantly easier to implement a system given a formal model of its behaviour
than vice versa. One would be hard pressed to prove anything about what the system is
doing without first defining what it is the system should do. Nonetheless, people still try [10].
While this allows simple assertions to be made about the system, it does not make verifying
correctness much easier than just reading the implementation.

It is also very difficult to create an abstract model of an API which already exists, since much
of the time, its implementation has evolved more than it has been designed.

Another significant function of an API is a central point on which development of a system
is based. Any model of the API can be referred to by people implementing or modifying the
system. However, if the behaviour outlined by the API is self-contradictory, the system may
well end up acting strangely or not at all. This is where a formal model of the API comes in.

The motivation for this thesis is to provide a relatively simple formal model for the L4
“Pistachio” pu-kernel. Presently, the API resides in a Reference Manual [12] and in the im-
plementation. While the Reference Manual contains a documentation of all system calls, it
is insufficient to create a model of the system, whereas the implementation is very complex,
barely documented and highly optimised (with nearly every possible shortcut utilised); it
cannot be used as a model.

A top-level model created in B should be quite small, and therefore easy to check for correct-
ness, while the ability to animate it will make the task even easier. It can be very useful to
those working on the L4 implementation and the future of the L4 Pilot project. Also, a new
Security API is being worked on for L4. Comparing the new API with the current model
may also provide useful information on how the new Security API might be implemented.



Chapter 2

Introduction to L4 Internals

This chapter describes some of the internal mechanisms in L4, as well as expanding upon the
very brief overview of L4 provided in the introduction (page 1.4).

2.1 Address Spaces

In L4, address spaces do not have identifiers, other than their information structures being
accessible by pointers inside the kernel memory area. When dealing with user mode appli-
cations, address spaces are identified by passing in the thread identifier of the thread whose
address space is the one desired.

Each address space has a User Thread Control Block (UTCB) area to store user-mode details
of threads contained inside it.

Since there is no way to specify an address space without a thread, the process of creating
address spaces is merged into that of creating threads. This means creation of an empty
address space is not possible.

Apart from address spaces reserved for special threads (see next section), there is an extra
address space for internal kernel threads known as the kernel address space.

2.2 Kernel Interface Page

In L4, all information particular to the current instance of the kernel is stored in the Kernel
Interface Page. The KIP must be mapped into each thread’s address space and is read only.

Information provided includes how many threads are permitted in the system, how many
interrupt threads there are, etc.



2.3 Threads

The number of threads is predetermined at system start up. The kernel reserves a certain
number of internal structures for storing the kernel-level details of each thread. These struc-
tures are Kernel Thread Control Blocks (KTCBs) and hold information that no thread should
not have direct access to (such as scheduling priority, thread identifier and thread state).

Data that a thread has on itself (which the kernel does not directly use to run) is provided
in UTCBs stored in the address space’s UTCB area. This includes extra call and return
parameters to/from system calls and general information such as the thread’s current identifier
(which the thread can modify, but which will not affect the functioning of the kernel at all,
only give the thread misleading information it is someone else). The size of the UTCB area
limits the number of threads possible in each address space.

2.3.1 Special Threads
Sigma0

Sigmal is the default system pager. Its job is to take up all possible non-kernel memory on
start up, and give it out to threads as it is requested. Sigma0 is not a memory manager, and
does not accept any form of request to take back (free) the memory that has once been given
out. When other special threads load during the kernel loading procedure, memory is taken
from sigma0. After this is done, a memory manager should take the remaining memory from
sigmal and manage it appropriately. Sigma0 gets its own address space, and is a privileged
thread.

The Root Server

This is where an operating system start-up begins. After the root task (the kernel loader and
setup subsystem) finishes loading the kernel, sigma0 and the root server have been created.
The scheduler is then invoked and the root task loses control forever. This means that sigma0
and the root server will most likely be the only two threads running in the system (the can
be more root servers if the root task is modified), and since sigma0 already has a predefined
function, operating system start-up is the role of the root server. The root server also gets
its own address space and is a privileged thread.

Sigmal

The sigmal thread was originally designed and introduced into L4 as a method to manage
task persistency (that is freezing tasks, saving them to disk, then being able to load and
resume them again). The problem of task persistency has not been a key feature of L4 and
has since been mostly deprecated. Many people using 1.4 do not know what sigmal really
does. Like sigmal, it is a privileged thread and also gets its own address space.



Privileged Threads

Having defined three privileged threads, knowledge of what it is they are privileged to do
would be appropriate:

e Creation, deletion and modification of threads
e Set up and initialisation of address spaces

e Modification of machine settings (such as processor frequency) on architectures that
support them.

A thread is defined to be privileged if it resides in the sigma0, root server or sigmal address
space. This is how the initial root server can create more privileged root servers to perform
various tasks (such as a dedicated thread manager).

The kernel address space also holds privileged threads, though this isn’t listed in the reference
manual. The exact comment in the source code [5] is “do not allow user to mess with kernel
threads”. Considering them privileged seems to have no adverse effect, only the check is
different.

Interrupt Threads

In ordinary operating systems, when an interrupt occurs it is directed to an interrupt handler
which immediately invokes the appropriate function somewhere within the kernel. In a p-
kernel, the handler of the interrupt has to be implementable by the user, and the user can
only work in user mode. This means that handlers will be in threads running outside of the
kernel and some form of delivery must be devised.

The method L4 uses is to use the IPC abstraction for delivery of interrupt notifications. Once
the interrupt is handled, the handler has to notify the kernel that to re-enable the interrupt
(which again must happen through IPC). In order to do that, the notifications must be sent
from somewhere that the handler can reply to, i.e. another thread.

This implies the existence of interrupts as threads, and indeed, this is the abstraction used.
There are some key differences however. The interrupt is an actual pin on a chip, and so
it cannot actually run as a normal thread would. This means an interrupt thread’s thread
states (see page 9) are more convoluted than usual. The IPC abstraction works because the
kernel captures messages targeted at interrupt threads and performs its own internal actions
as a result. It also sends an IPC on behalf of the interrupt thread when an interrupt occurs.

Interrupt threads are internal to the system and reside in the kernel address space. While
they are defined to always exist, their UT'CBs are created lazily, which means that the concept
of creating an interrupt thread exists.

They do not have schedulers (since they do not run and hence have no scheduling parameters).
Their pager is called a handler and it is the thread that associates a thread with an interrupt
it must handle. To deactivate an interrupt, the handler is set to be the interrupt thread itself.



2.3.2 Thread Identifiers

Due to L.4’s number one priority being efficiency, the thread identifier system is very interesting
indeed.

Firstly, the possible thread identifiers are divided into local and global. Global identifiers
allow a thread to select another in the system, while local identifiers work only in the same
address space.

Global identifiers

Global identifiers are further divided into the thread number and the version. Here is where
the first optimisation occurs: the thread number is actually an index into the KTCB table.
This means that looking up a thread is nearly instantaneous.

There are thread numbers reserved for various tasks inside the system:

e [0, SystemBase) : interrupt threads
e [SystemBase, UserBase) : kernel internal threads

o [UserBase, maximum) : user threads

Since thread numbers and KTCBs are the same unit of allocation, interesting properties arise
when a thread ends up pointing to another thread that has been deleted (for example, when
its scheduler is deleted). If the thread numbering system was left to itself, the first thread
that gets the same KTCB as the old deleted thread would immediately be accepted as the
old thread (meaning the new thread could still be the scheduler for the thread the old one
scheduled).

This behaviour may or may not be desired by the person deleting the thread. Therefore, a
user-controlled version field was introduced. To see if two identifiers are the same, the kernel
checks the thread number and the version. This way, if the above behaviour was desired, the
version number can remain the same. On the other hand if the new thread is to be different
than the old one, the version field must be modified (by incrementing it by one, for example).
This has the capacity to overflow eventually.

The interrupt threads always have a version of 1. The initial privileged threads also start
with a version of 1.

Local identifiers

These can be identified by the fact their lowest six bits are 0. The rest of the bits are
naturally a reference to the thread’s UTCB location, again allowing near-instantaneous lookup
of threads in the local address space.

The reason for their existence is further optimisation. Since switching between threads in
different address spaces is a time-consuming operation, when switching to another local thread



the scheduling system may be bypassed. Since the fast IPC path between local threads (see
page 11) uses this type of switching, it is another way to optimise IPC, the core component
of L4.

Since the identifier must still be checked if its a local identifier, why not just check if a thread
is in the same address space given a global identifier? Why are local identifiers even needed?
The reason is quite likely to be the ability to restrict certain functionality in L4 to local
(or global) threads only allowing it to be more efficient. Also, checking once is faster than
checking twice. Finally, being able to specify anylocalthread for some operations is a useful
addition.

Special identifiers
Three identifiers are reserved for special tasks:

e nilthread represents “no thread”. This has varied uses, from specifying a setting is to
be left unmodified, through special meanings when invoking certain system calls, to
performing send-only or receive-only IPC;

e anythread represents any thread in the system (for example, thread t; is willing to
accept a message from any thread in the system);

e anylocalthread is like anythread but signifies local threads only

2.3.3 Thread States

Ignoring multiple-cpu states, threads may assume the following states in L4.

First is the state of non-existence, which means a thread’s KTCB is not being used. This is
identified by an aborted state and the address space setting in the KTCB equal to NULL.

Next, the inactive state, when a thread is created but not yet active. This is identified by
the aborted state and a non-null address space attribute in the KTCB. From here, the thread
may be activated or deleted.

When a thread is activated or created active, it immediately starts waiting forever for an IPC
from its pager (in order to allocate the necessary memory to start executing). The state is,
as the name suggests waiting_forever.

When the IPC is received the thread may begin fully interacting with the system. Its state
becomes running. In other operating systems this state is often referred to as ready. This
does not necessarily mean the thread is running, only that it can. It is up to the scheduler
to decide which threads are running.

The halted state is special. A halted thread must not be scheduled or execute in user mode.
This includes switching into it without the scheduler being involved. Since the thread may be
resumed, the previous states had to have been saved. Halting has no effect on IPC delivery.

For interrupt threads, halting means something completely different. An interrupt is enabled
if the thread is halted. 1t is disabled if the thread is not halted.



The other states (polling and waiting_timeout) are discussed in IPC on page 11.

2.3.4 Pagers

When a running thread triggers a page fault (memory access to an area that it does have
access to but whose data is currently somewhere else, e.g. on disk or unallocated) the kernel
must resolve the issue. However, a pu-kernel does not have built-in memory management
facilities and relies on the user to implement this to their liking. How then does the fault get
resolved?

The answer is that every thread in L4 has a pager attribute containing a global thread
identifier (which most of the time implies it also has a pager). When a page fault occurs, the
kernel dispatches a page fault IPC on behalf of the thread to the thread with that identifier.
If the thread exists, it gets the message and may resolve the memory issue. If it does not
exist, the faulting thread is suspended or killed.

The reason a thread’s pager may not exist is again efficiency. It is very slow to check every
thread in the system to see if the thread we are deleting just happens to be its pager. It is
better not to check and deal with the problem when a page fault occurs, or even better, to
assume the user will prevent this situation from arising.

2.3.5 Schedulers
A very confusing thing about 1.4 is that schedulers and the SCHEDULE system call do not
actually schedule anything.

Each thread in the system has a scheduler attribute. The same issues occur as with pagers,
but the implications are different.

A scheduler is permitted invoke SCHEDULE on a thread whose scheduler attribute is its own
thread identifier.

Scheduling attributes include the thread’s priority, which is used for scheduling, but not
directly.

2.4 Scheduling

L4 possesses an internal priority-based scheduler which bases its decisions on the parameters
defined using the SCHEDULE system call.

The internal scheduler is not a thread. It is simply a function which picks the next thread to
execute.

In order for a user to specify his/her own scheduler, the only way to do so is to set the
priorities of all the threads in the system except the scheduler to 0. Then any thread switching
or pre-empting condition will end up with the scheduler being chosen as the next thread to
execute. The scheduler can then yield donating its time slice to another thread (using the
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THREADSWITCH system call).

2.5 IPC

The Inter-Process Communication, or IPC is the core component of L4. Nearly all aspects
of the system are abstracted by IPC when possible, this includes donation and leasing of
memory to other processes.

IPC is synchronous. This means that for a successful transfer to occur, the sender must be
sending or polling while the receiver is waiting (or running, if the sender is polling). What
is more the receiver must be waiting for the sender for this to work. The special thread
identifiers anythread and anylocalthread also declare who a thread is willing to receive from.

When a receiver is willing to receive but there are no candidates, it goes into a waiting state,
which is either waiting_forever or waiting_timeout depending on whether the chosen waiting
timeout is infinite.

When the sender tries sending an IPC but the receiver is not ready or currently willing to
receive, it goes into a polling state and is placed in the receivers incoming queue. There is
only one polling state, regardless of the timeout. Polling may include an additional receive
phase, which means that should the send succeed, the kernel immediately places it into a
waiting state with the receive phase parameters.

The fast IPC path in L4 occurs when the sender encounters a waiting receiver. The IPC
occurs immediately and the sender’s remaining time slice is donated to the receiver. In this
manner, a thread can decrease the time it has to wait for a reply (since the scheduler would
not necessarily choose the receiver as the next thread to execute). Sometimes, a thread can
send an IPC, switch to the receiver and get a reply when the receiver switches back during
the same time slice.

The actual data that gets transferred between threads is virtual registers (which may or may
not be implemented in hardware) and items. The sender states how many of these registers
it wishes to transfer. It can also send map items, grant items and string items.

Mapping and granting is covered in 2.5.1.

String items, as their name suggest, are used to transfer strings from one thread’s buffer
registers into another’s. Since the size of strings is dynamic, various issues with page faults
on either sides and inside the kernel itself arise. String items are not implemented on all
architectures and their usefulness is often disputed.

2.5.1 Memory Donation and Leasing Using IPC

As part of IPC, the sender may send the receiver map and grant items. These items, whose
exact structure is defined by an Fpage [12, section 4.1] determine leasing and granting of
memory to the receiver and is performed during the IPC by the kernel.

Granting means that the sender completely gives away the memory to the receiver, and is no
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longer able to access it. The receiver owns it and is responsible for its eventual deallocation.

Mapping allows the receiver to access a memory area (read and write) but not own it. This
means the privilege can be later revoked.

2.6 System Calls at a Glance

Kernellnterface

Tell a thread where the Kernel Interface Page is in the current address space.

ExchangeRegisters

May be used by any thread on another in the same address space. Allows modifying existing
threads (pager, registers and handle) and also activating inactive ones.

ThreadControl

Only for privileged threads. Create, activate, modify or delete a thread based on parameters.

Activation occurs when a valid pager is supplied. The scheduler is also set by this operation.

SystemClock

Obtain the current clock value (an internal counter value in us).

ThreadSwitch

Stop execution of this thread and donate the remainder of the time slice to another one, or
just yield completely.

Schedule

Change the scheduling parameters for a thread (see page 2.3.5). Must be the thread’s sched-
uler.

Unmap

Revoke a mapping given to another thread as part of IPC (see page 2.5.1).

12



SpaceControl

Initialise an address space. Privileged threads only.

Ipc

Participate in Inter-Process Communication (see page 2.5)

ProcessorControl

Privileged threads only. Change CPU settings. Awvailability of settings varies with architec-
ture.

MemoryControl

Used to set page attributes.

13
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Chapter 3

Overview of the B Method

While a complete description of the B Method is outside of the scope of this thesis, I will
attempt to give an overview for the benefit of the reader.

Development within the B Method is based on three levels:
Abstract Machines Units of isolation, in themselves layers. They represent the base defi-

nition of what the program components will do, i.e. the minimal functionality that satisfies
the program requirements (as dictated by a client or programmer). They consist of:

e CONSTRAINTS — restrictions on parameters passed into a machine

e DEFINITIONS — purely syntactic translations. They use a feature of B called jokers.
Any single-letter token counts as a joker and represents any set of tokens. For example:

isFull(x) == bool(x € full)

will define a function-like construct whose value is the boolean whether the parameter
belongs to the set “full”. This feature is similar to #define in C and C++, but one
definition cannot use another one within the same machine.

e SETS — abstract sets (such as USERNAME as an abstraction of all possible user names
allowed in the system) and enumerations

e CONSTANTS — these may be anything that is not dependant on variables. Constants
may be members of sets, sets, or functions (which are, in fact, also sets).

e PROPERTIES — define restrictions on sets and constants, which for the latter defines
what they are.

e VARIABLES — a list of variables separated by commas. What these variables represent,
their types, properties and relationships between them are contained in the invariant.

e INVARIANT — this is a logical assertion about the system which should always hold (a
“safety constraint”), but, more importantly, defines what the machine really is. Within
it, all variables types, properties, and relationships (including between those in this and
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other machines) are defined. It is also the most difficult part of the specification to
produce, since the invariant must be strong enough to encapsulate information about
the system, and cannot contradict itself.

e ASSERTIONS — “facts” that derive from the invariant. They are mostly used to make
proof easier.

e INITTALISATION — When the “machine” starts, not only do variables need to have
defined values, their values must not break the invariant. This needs to be proven.

e OPERATIONS — Things that can be done with variables. A crude analogy is that
of static class methods. At the abstract machine level, only parallel composition is
allowed, i.e. all statements in the operation (including invoking other operations) occur
at the same time; the operation itself is instantaneous. An operation may only invoke
operations in other machines, and only when permitted by inter-machine relationships.
The key to proving the invariant holds are preconditions in front of every operation.
Invoking another operation requires that that operations’ preconditions are satisfied,
and that any combination of variables satisfying the precondition will preserve the
invariant.

In this manner a chain of “sane” states may be traced from the initialisation (which satisfies
the invariant) via operations which cannot break it.

The relationship between machines is extremely restricted. A machine can either include
(full read/write access to everything contained and included in it, plus invoking operations),
use (full read access to everything in that machine) or see (read access only to sets and
constants) other machines. When a machine includes another, it chooses (via PROMOTES)
which operations of that machine will be visible when this one is included into yet another
machine. If all operations are to be visible, INCLUDES is replaced by EXTENDS.

Please note that there is only one namespace in B and great care must be used in order to
avoid collisions.

Refinements are functional redefinitions of machines at a more detailed level than what
they are refining. For example, at the abstract machine level, a single-resource manager may
simply say “pick any identifier which is not in the set of used identifiers”. A refinement might
choose not to use a set at all, since it has no need for ever reclaiming identifiers (e.g. student
numbers) and refine the used set down to just one number: the next free id. The refinement
will then say “if the next free identifier is less than the number of permitted identifiers, pick
that one and increment the next free identifier”. This can be refined again, and again, until
things are simple enough to implement.

Refinements also have the capability of sequential composition, in which statements happen
one after another, not at the same time as before.

In light of this, while refinements are still considered machines, some parts of them are viewed
differently. The invariant is no longer an indicator of the valid state, but instead defines the
relationship between the variables in the refinement and the refined machine. The operation
definitions must exactly mirror the ones of the refined machine. However, preconditions may
be different. This is because the refinement may have more functionality that what is being
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refined. All that we are requested to prove is that all functionality of the operation in the
refined machine is indeed implemented in this one, via the invariant relationship. No new
operations may be added.

Note that refinements do not have access to other refinements. They are allowed to include
other machines, but cannot be dependent on how those machines are refined.

Implementations are the culmination of refinement efforts in B. They use a completely
different language, there are no preconditions, and there is no state. All state must derive from
other machines. The implementation cannot base itself on information about the refinement
or implementation of any other machine, allowing the refinement/implementation process to
be independent for each abstract machine. This also means one machine can have many
interchangeable implementations.

For a good reference to B syntax, I recommend Ken Robinson’s “A Concise Summary of the
B Mathematical Toolkit”, available from:
http://www.cse.unsw.edu.au/ " cs2110/B-Summary/index.html
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Chapter 4

Related Work

4.1 Early Efforts

One of the first efforts at formal specification of a kernel was that of William R. Bevier [3].
His KIT Project consisted of verifying a simple multitasking system running on a simulated
von Neumann architecture machine. In fact, two finite state machines are simulated: one
“running” the abstract kernel model, the other is the actual kernel running on the computer.
Using a Boyer-Moore Logic prover they then attempt to show the model satisfies the require-
ments, and then prove an implements relationship between the two state machines. Bevier
finally descends into proof of machine code.

His progress was certainly very thorough, but one can clearly see that all though the mod-
elling, everything is completely bound to the machine. Registers and bit fields make an early
appearance, and it turns out the abstract model is not really abstract. This is compounded
by arcane LISP-like syntax, plus the need to define absolutely everything, since there was
nothing to base on. The author indicates problems they had with the theorem prover, the
near-impossibility of proving the implements relationship, trouble with defining queues and
various other aspects. One can quickly appreciate the progress in formal methods since then.

4.2 Modern Object-Level System Specification

While he does not specify a kernel of any kind, Yuan Yu [23] presents a way of machine code
program proving on a model of a specific microprocessor. He also uses a Boyer-Moore logic
prover, but the improvement made by tools in that area are clearly visible.

Yu succeeds in proving the functionality of various small programs and functions, but indicates
just how complex the process is. Due to the large state one must work with, proof becomes
difficult. Additionally, there is no way to prove the validity of the model of the processor,
which consumes a large amount of the document.

While extremely useful, this type of specification is unlikely to be successfully applied to an
entire kernel (or p-kernel) when used on its own. However, it is very difficult to go from a
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top-level specification all the way down to source code when it comes to operating systems,
since they all require low-level interaction with the machine at some point. One can take
things as low as possible, and then place all functions that need to be written in assembler
or that cannot be generated into separate files, merely using them in the generated code as
‘magical’ statements that do what is needed. Later, object-level verification such as Yu’s can
be used to prove these functions are not magical and indeed do what is expected of them.

4.3 Going Backwards

Another alternative is to attempt to work backwards and prove things about code that has
already been written. An example of this is the VFiasco project [10]. Fiasco is an L4-based
p-kernel written in C++. Using a model of x86 hardware and a model of C++, the project
will attempt to prove certain things about the p-kernel, such as guaranteeing all page fault
handlers terminate.

At the time of this writing, the VFiasco project seems to have stalled. No major updates
have been posted since July 2003. Even if work resumes, they are unlikely to prove anything
significant about Fiasco by analysing its source code (which is written in C++4, a language
notorious for the depth of its notation).

Apart from low-level object verification for specific application domains (such as that pre-
sented by Yu [23]), attempts of system proofs starting at the implementation are, in my
opinion, doomed to fail due to lack of manpower and availability of computer intelligence.
This thesis demonstrates the difficulty of discovering an abstract specification knowing the
code base and a few people who know more or less what it is supposed to be doing. Code
analysis is even less informed and would require an intelligent machine for it to figure out
what the programmer was thinking, which might fail even then.

4.4 Top-only

When it comes to proving anything about operating systems, the majority of projects only
approach the problem at the top level of creating an abstract model not directly linked to the
implementation (that is, it models what the implementation does, but there is no simple way
to derive one from the other automatically). This way they can be concerned with proving
that the behaviour of a system is consistent, and leave the verification that the implementation
does what the specification says it should do to humans.

For developing and research operating systems, such as EROS, proving that the theory is
sound before embarking on the path to implementation (or continuing down it) is extremely
valuable. The best implementation of a bad idea cannot possibly result in a good system.
For EROS, the primary goal is confinement of tasks running within the system. Shapiro and
Weber [18] set about proving their model for confinement is consistent. The general idea is to
define all the semantics of the operating system, including a concept of mutation (if a process
modifies resource z, = is mutated by the process; if another process reads z, then it too has
been mutated), and showing that what is mutated by a process is a subset of resources defined
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as modifiable by the security policy.

The above relates to a system with more anticipated complexity than the current version of
L4 (which does not possess any advanced security architecture). For systems that are much
simpler, the entire system may be modelled. An approach similar to the one undertaken
by this thesis is that of J.M. Spivey’s work on specifying the kernel of a safety-critical X-
ray diagnostic machine [19]. This model is interesting for many reasons. Firstly, the entire
kernel is modelled, similar to my situation. Secondly, the author acknowledges that the true
reason for performing the specification is to abstract the kernel from its implementation and
to document it for future reimplementations (possibly on different machines). This indicates
what this thesis will most likely be used as. Third, he uses the Z formal notation, which is the
B Method’s predecessor. Finally, the model is a success due to finding a flaw in the system
that could potentially have caused the X-ray machine to inflict damage. Again, this is an
example of a model testing the ideas the system was built on.

The academic approach of inventing a kernel to verify and then proceeding with the imple-
mentation is utilised to good effect by S. Fowler and A. Wellings [8]. The kernel they devise is
to be used as a basis for an “Ada95 runtime support system in a hard real-time environment”.
After reviewing their work one can see the great deal of freedom that is available in the spec-
ification when there is no implementation to limit its progress. This is also true when the
initial ideas that are eventually implemented in the kernel are still available for review and
discussion. The approach is the exact opposite of attempting to verify an implementation
after it has been completed, and in my opinion is the easiest way for a verified operating
system kernel to be produced.

4.5 Top-Down

Since most formal methods do not allow gradual refinement (as seen in the B Method),
very few operating system kernel specification attempts have been made in a top down fash-
ion. Those that have been made mainly consist of two levels only: abstract specification
and concrete implementation [9], or just abstract specification as mentioned in the previous
section [7].

This “methodology” starts out with an abstract specification of the system functionality and
proceeds from there. This method is often used to develop a functional abstract specification
from the requirements (sometimes independently of any existing implementation) in order to
discover flaws and weaknesses in the system [22].

4.6 Implications for This Thesis

Compared to the above, using the B Method presents interesting advantages as well as chal-
lenges. The ability to start with a relatively “pure” specification layer and then refine the
parts that require it, allows (and requires) great simplification of L.4 down to its core compo-
nents. This should make the specification easier to understand, but its creation will requires
a very detailed understanding of L4. Due to this, the situation present at the beginning of the
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thesis is clearly much more restricted than when creating a brand new kernel [8]. Progress
will undoubtably be slowed by gaps in understanding.

As discussed earlier, developing any implementation from a high-level formal model poses
difficulties even for PhD students (since it often requires a formal model of the architecture
the system is to run on, which in itself is material for another thesis). This places any code
generation outside of the scope of this thesis. Indeed, even attempting refinement may fail due
to time constraints. As stated by Shapiro and Weber [18]: “Operating systems are notoriously
complex. Specifying the semantics of their operation is difficult, tedious, and error-prone.”
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Chapter 5

Results

This chapter contains a detailed description (and justification) of the API specification that
is the result of this thesis, as well as the methods and approach used to obtain it.

Basic knowledge of set theory and logic is assumed, however the B syntax and notation is
explained on the way (see chapter 3 for an introduction).

It is intended as a guide to the complete B specification (provided in Appendix A). While the
specification is listed in a top-down fashion to make finding things easier as well as to be able
to see the broader picture, this section describes all machines and operations in a bottom-up
fashion, describing how the complete model was obtained (this is also the order they were
created in).

5.1 Design Methodology

To facilitate better understanding of the results, this section provides a description of the
methods used to achieve it and the motivation behind them.

Basis

Firstly and most importantly, the model had to be based on a stable (that is, not moving)
target. For this reason, the release version of pistachio available at the start of this thesis
was chosen [5] as the basis for the model. For the duration of developing the model, further
updates were ignored. This was especially helpful since the reference manual is always in the
past of any fresh versions (especially those available from CVS).

Since this thesis was started with only a rudimentary knowledge of operating systems and
absolutely no knowledge of L4, documentation was more important that being on the cutting
edge.

This action resulted primarily in missing IPC redirectors, which are an extra functionality
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added at the request of a certain company'. It has generally been agreed to be a half-
measure until a new security API is developed [16]. In my version of the documentation, they
are mentioned, however in the implementation they are ignored. It has since come to my
attention that they have indeed been implemented in the development version available via
CVS.

Goals

The model was designed with the following goals in mind:

e A learning tool — animation of the model may allow for faster understanding of L4
internals by new inductees into the L4 verification project.

e Discovery — as L4 is continually adjusted and improved for efficiency, the initial inten-
tions and ideas may have become overwhelmed by the deluge of optimisations. Trying
to boil the system down to its essentials in the form of an abstract model may help to
rediscover them.

e A starting point — while this undergraduate thesis presents a simplified model of the L4
API, the L4 Pilot project is proceeding with a “slice” of the system from specification
all the way down to source code using Isabelle/HOL [17]. The initial slice consists of
the virtual memory subsystem [21]. After the slice is complete, the API model should
help with a decision on what the next slice will be.

e Documentation — during meetings with L4 personnel and conversations with former
and current Advanced Operating Systems students, many of the questions I asked about
L4 internals resulted in arguments of varying lengths. The conclusions reached are
contained in the model and should help the next time such confusion arises.

e Experimentation — trying to formally model an existing system is a very difficult task
that has already proven unsuccessful for some [10]. Just as there are a seemingly infinite
amount of implementations possible for an abstract specification, so there is an infinite
number of abstract thoughts that could have lead to the current implementation. Trying
to find the minimal set of abstract components that describes the system is non-trivial.
This thesis represents something that has not really been done before and so is bound to
contain some inconsistency and misunderstanding, however someone trying to do this
again will be able to build upon the knowledge.

Viewpoint

The API is the boundary between user space and kernel space. When building a model, the
question is whose viewpoint do we model? From the perspective of a thread running in the
system, operations would be the equivalent of system calls, they would return immediately
and return actual values.

lwhose name cannot be disclosed at this time

24



From the kernel’s perspective, however, the situation is quite different. Firstly, when a system
call occurs, the kernel picks out the parameters from the thread’s registers and memory, then
passes them to an internal operation which implements the required functionality. Secondly,
the operation does not have to return immediately. The kernel can freeze the thread, change
its state, put it on a waiting queue and so forth. Finally, when the time comes to return a
value, the system call does not return a value internally, but instead puts the return values
back into the thread’s registers and memory.

As far as creating a useful model, the second viewpoint is clearly superior. It allows for
modelling of state transitions between threads and also does not force the modeller to specify
everything in one go; variables in the system such as each thread’s saved registers may be
deferred to refinement without the need to change the top-level model later (which would be
the case if all values had to be returned as operation return parameters).

This way of approaching the problem yields the non-standard situation of operations not re-
turning any values. Whichever values would be returned are stored in internal state variables,
modelled by non-determinism or deferred to refinement.

Completeness

Whatever is placed in a top-level specification in B is the lower bound on the functionality
in the system. This means that leaving things out does not necessarily make the model
wrong, as long as the behaviour is correct. An example of this is replacing difficult to specify
functionality with non-determinism. For instance: stating that an operation either does
nothing successfully or fails with an error is acceptable if that is what the system really does.
During refinement, the exact details of what the operation does and how it determines failure
can be defined!.

This is the case with memory management in my model. Since memory management is
part of IPC in L4, trying to add it into the specification at the top level makes things too
complicated, especially since the top-level specification is restricted to parallel composition,
but some form of iteration is required to implement mapping and granting (see 5.5.1, page
51).

Unfortunately, due to time constraints, I never reached the refinement stage, and so memory
management remains absent from my model and its behaviour is simulated in my model by
non-determinism.

Structure

When dealing with modular systems it is possible to structure a B development in such a
way that functionality is distributed into various machines according to those models. A
microkernel is unusual in this respect, since it must contain everything necessary to support
an operating system but no more. This means that it is effectively a single module in which
everything is intertwined. This does not create a very exciting structure for a development
(as seen on figure 5.1).

!This can only work if the state the operation is meant to work on has also been deferred to refinement.
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WeakSysCall Context Machines
IpcBase

IpcCore

AddressSpace

Figure 5.1: Inclusion diagram for the B development.

Since everything is reliant on everything else, the best separation I have been able to achieve
is putting address spaces, threads and IPC in separate machines (though they still depend
on each other as shown in figure 5.1).

All the types and constants are placed in context machines (suffixed “Ctx”). Apart from
helpfully dividing the development into state machines and those providing abstract sets, the
practice helps with refinement. They can also be used as a method of slowly building up the
specification, adding only those context machines that are necessary at every stage.

The B Method does not impose any rigorous naming convention on its users, with the excep-
tion that all-capitals is reserved for names of sets and operations must begin with a capital
letter. However, there is only one namespace, so names must be structured in such a way as
to prevent collisions. This has lead to including prefixes for all enumerations and a ‘d’ prefix
for most definitions, as well as very long classifying names such as thread_ipc_waiting_timeout.

Possibly the biggest structural problem that B has presented is the inability to invoke two
unrelated operations in parallel in a top-level specification. This means if you have two
operations in the same machine: SetScheduler and SetError, clearly having nothing to do
with each other, you cannot invoke them in parallel. This is very important because the top-
level specification only allows parallel composition, and the B Toolkit only allows animation
of the top-level specification.

This can be resolved by stripping the top-level specification as far as possible and heading
straight for refinement where sequential composition can be used. However, one of my goals
is successful animation of the specification, clearly mutually exclusive with this solution.

The other solution is to duplicate statements. In the above example, an extra operation
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when both the scheduler and the error must be set which combines the statements from both
in parallel will resolve the issue. This creates ‘obvious’ operations, but is the only way to
reconcile the goals.
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5.2 Types and Constants

The B Method uses first-order logic based on sets and set membership. Any type information
is therefore also conveyed in terms of set membership. In order to define a system inside this
methodology, we must first define abstract sets of things inside it. B supplies built-in sets
such as NAT (all natural numbers, N) and NAT1 (N; = N—{0}). Library machines provide
other sets such as INTEGER and BOOL = {FALSE, TRUE}.

Sets may be defined abstract (a set with additional, optional, properties applied in the PROP-
ERTIES clause) or enumerated (all members and the cardinality are defined immediately e.g.
BOOL in the previous paragraph). Enumerated sets are used similarly to enumerations in
programming languages such as C.

In addition to type information, all systems manage a finite set of resources. By defining
abstract sets of things (such as thread numbers) and restricting their cardinality, we implicitly
define an upper limit on the number of such things in the system. B later asks us to prove
these limits are not exceeded.

5.2.1 Machine Kernellnformation

In L4, a structure called a Kernel Information Page (KIP) contains all the constant values in
the system (how many interrupts, first id of a user thread, etc.)

This machine serves a similar purpose, but we are concerned with limiting three main aspects
of the kernel, the:

e number of threads in the system (kMaxThreads)
e number of address spaces in the system (kMaxAddressSpaces)

e number of threads in an address space (kMaxThreadsPerSpace)

These three constants are listed in the CONSTANTS part of the machine, and have the
following properties:

PROPERTIES

kMaxThreads € N; A

3 < kMaxThreads N
kMazxzThreadsPerSpace € N; A
kMazxAddressSpaces € N1 A

3 < kMaxAddressSpaces

All three are defined to be non-zero. Each thread must have an address space; an address
space can only be created by also creating a thread [12, section 2.4]. There are three address
spaces initially in the system: the sigma0 space, the root server space and the kernel space.
The minimum number of address spaces is therefore 3, and the same goes for threads. The
maximums must hence be at least 3 also.
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5.2.2 Machine AddressSpaceCtx

In order to talk about address spaces within the model, further context is defined. This ma-
chine SEES all the constants and sets in Kernellnformation (see 5.2.1). The SEES relationship
allows only this.

The abstract set of all possible address spaces (think of them as pointers to address space
structures) is defined and restricted to the maximum number of address spaces in the system:

SETS
ADDRESS_SPACE
PROPERTIES

card ( ADDRESS_SPACE ) = kMaxzAddressSpaces N
kRootServerSpace € ADDRESS_SPACE N
kSigma0Space € ADDRESS SPACE A
kKernelSpace € ADDRESS SPACE A
kRootServerSpace # kSigma0OSpace N

kSigma0Space # kKernelSpace N

kRootServerSpace # kKernelSpace

In the above, three new distinct constants are defined. Their function is to reserve three
arbitrary members of ADDRESS_SPACE for the three core address spaces:

e kSigmaOSpace to hold sigma0

e kRootServerSpace to hold the root server

e kKernelSpace to hold the interrupt threads
Note that sigmal, which is also given its own address space in the kernel, is not listed here.
That is because it is a persistence extension to L4 (and thus is outside the scope of this model),
is unimplemented in the source code version my model is based on [5], and discussions with

L4 personnel indicate that it is not a core feature of the kernel and should be disregarded at
this stage.

These address spaces are privileged, and a DEFINITIONS clause is used to define a useful
macro for testing whether an address space is one of these:

DEFINITIONS

dIsPrivilegedSpace ( s ) = s € { kSigmaOSpace , kRootServerSpace ,
kKernelSpace }

A definition in B is a direct rewrite in the pre-processing stage. Note that the single letter ‘s’
is a joker and represents any B expression. All single-letter tokens are jokers in B.
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\_/ tsWaitingTimeout /\
/_\ tsAborted

tsWaitingForever \_/
tsPolling J

Figure 5.2: A very simplified diagram of possible state transitions.

If you are looking for a definition or DEFINITIONS clause in the marked-up version of the
specification and cannot find it, please note that the mark-up system in the B Toolkit places
them at the end of machines, not at the beginning as one might expect.

5.2.3 Machine ThreadStateCtx

This machine defines an enumerated set (THREAD_STATE) of simplified states that threads
can experience in L4:

e tsAborted — the thread exists, but has not been initialised

tsRunning — the thread has been initialised and if scheduled, can run

tsPolling — thread is waiting on an IPC send to another thread

tsWaitingTimeout — thread is waiting for incoming IPCs from one or more threads,
with a finite time-out

tsWaitingForever — as above, but the time-out is infinite

Figure 5.2 presents the possible transitions between these states. A more complete diagram
can be found on page 63.

These states differ from the ones in the 1.4 implementation in following ways:

e Multiprocessing-related states (e.g. xcpu_waiting_deltcb) are missing (my model is too
abstract to model multiple-CPU interaction);
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e Locked states are missing (e.g. locked_running) as they are also primarily multiple-CPU
related;

e The halted state is missing. After discussing this with other individuals involved with
L4, this state is better modelled by a flag. As defined in [12, section 2.3], halting a
thread prevents it from executing in user mode, but ongoing IPC is not affected. One
understanding of this is that it simply prevents the thread from being scheduled. Fur-
thermore, the ExchangeRegisters system call needs to resume halted threads, creating
the need for another (saved) thread state. This can still be refined in if necessary, but
makes for a simpler model;

e The aborted state has a slightly different meaning that in the L4 implementation [5,
thread.cc]. In L4, all kernel thread control blocks are pre allocated and their initial state
is aborted. When a thread gets created inactive, the state remains aborted. The actual
existence of a thread is defined as the thread having been assigned to an address space.
Deleting a thread involves deleting this assignment. In my model, the non-existence of
a thread is marked by its absence from the set of existing threads, so the threads do not
have any actual state. Once the thread is created inactive, the two viewpoints merge.

5.2.4 Machine ThreadCtx

ThreadCtx defines the context of threads excluding thread identifiers (see 5.2.5 ThreadldCtx).

Two more definitions are added:

DEFINITIONS

canSend (t) = thread_state (t ) € { tsRunning , tsPolling } ;
canReceive (t) = thread_state (t) € { tsWaitingTimeout , tsWaitingForever }

These demonstrate definitions in B are purely syntactic, since thread_state is only defined in
Thread (5.4.1) which this machine does not see.

To send an IPC, a thread must either be running (it invokes the IPC) or polling (the kernel
invokes the IPC on behalf of the thread). To receive one, it must be waiting.

The machine defines a set TCB restricted to kMaxThreads (see 5.2.1), which represents all
possible threads creatable the system. I have chosen this name due to its similarity to the
pre allocated Kernel Thread Control Blocks in the system. The two constants kSigma0 and
kRootServer reserve two distinct members of TCB for sigma0 and the root server respectively.

Additionally, the constant kIntThreads reserve a subset of TCB for interrupt threads as
follows:

kIntThreads C TCB A

kIntThreads # {} A

card ( kIntThreads ) < kMaxThreadsPerSpace A
kSigma0 & kIntThreads N

kRootServer & kiIntThreads
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kIntThreads is a proper subset of TCB, of which kRootServer and kSigma( are not mem-
bers. Since interrupt threads go in the kernel address space, there must not be more than
kMaxThreadsPerSpace of them. There must be at least one interrupt thread in the system.

The set EXREGS_FLAGS defines the various options that can be passed into the Exchang-
eRegisters system call [12, section 2.3]: ex_h represents h, ex_R represents R and so on for all
the flags: hpufisSRH. These will be covered in detail as the design of ExchangeRegisters is
incrementally revealed.

5.2.5 Machine ThreadIldCtx

Now that the thread context is defined, thread identifiers, the user’s view of threads need to
be addressed.

The set THREAD_GNO represents all possible global thread identifiers. The constants
kAnyGNo and kNilGNo represent anythread and nilthread respectively. There must be enough
thread numbers for all threads plus two for the aforementioned constants, making the set car-
dinality kMaxThreads + 2.

Local thread identifiers are a performance enhancement. In L4, the local thread id of a thread
is literally an offset into the array of user TCBs in the current address space. This makes
working with threads in the same address space much faster, and allows a further optimisation
to IPC called Local IPC (LIPC). Since my goal was to create as simple and high-level model
of the system as I could, this and other optimisations were removed.

Thread versions, on the other hand, are another performance enhancement, this time to do
with thread renaming. An example of how this is useful:

1. Thread A is created and activated, with thread B as its scheduler;

2. B is deleted, but A’s scheduler is not updated, since finding all threads B was scheduling
would be slow;

3. Thread C is created, and gets the same kernel TCB as B had (which in L4 also means
the same thread no. in the global thread ID). This process is very efficient and does
not actually allocate anything new. If the version field is not incremented, then C' can
function as A’s scheduler, which is undesirable. Thread versions allow this fast renaming
to work, but the kernel does not do this automatically.

The above shows why at the abstract specification level, versions and thread numbers can
easily be made into one set, which I have chosen to call GLOBAL_TNO. Versions can be
added during further refinement.

5.2.6 Machine TimeoutCtx

While in the L4 implementation time-outs have actual values, in an abstract specification
the exactness of these values do not have much of an effect. The enumerated set TIME-
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OUT therefore contains only three values: eZeroTimeout, eFiniteTimout, elnfinite Timeout.
Refinement to exact values is possible.

The effect of this is essentially IPC:

e cZeroTimeout requests an action be taken (or it will fail) immediately

e cFiniteTimeout means that the thread will wait or poll for some time until timed out
by the kernel, or cancelled by another thread

e elnfiniteTimeout indicates that unless the operation is cancelled, the wait will go on
indefinitely

Three definitions are added: isFinite, isInfinite, isNoTimeout testing for eFiniteTimeout, eln-
finiteTimeout and eZeroTimeout. This is to prevent relating to those members of TIMEOUT
directly, in case the values will be changed from abstract to exact at some point in the future;
such a change would require only modification of the definitions.

5.2.7 Machine FpageCtx

This machine is only used at the top level to pass in Fpage parameters. Since my model does
not contain memory management, the implications of this machine are not far-reaching.

Nonetheless, the machine defines read, write and execute permissions in an enumerated set
PERMS, and then uses definitions to describe Fpages and their aspects:

dFpage (b,s,p) = b,s,p;

dFpagePerms = pri2 (N x N, P ( PERMS ) ) ;

dFpageBase ( f) = prjil (N, N) (prjl (N x N, P(PERMS))(f));
dFpageSize (f) = pri2( N, N) (prjil( Nx N, P ( PERMS ))(f));
dIsFpage ( f ) = bool ( f € Nx N x P ( PERMS ) ) ;

FPAGE = N x N x P ( PERMS)

FPAGE is just a Cartesian product of two natural numbers and a set of permissions (a subset
of PERMS). dIsFpage checks for this, and dFpage constructs an Fpage out of a base, size and
set of permissions.

In order to retrieve individual aspects of Fpages, projections are used. A projection is a
function that, given two parameter types, will take a member of the Cartesian product of
those types (a pair), and return the left or right member of the pair.

Thus dFpagePerms is a projection (prj2) returning the second element of the pair whose first
element is of type N x N and second is a subset of PERMS.

To retrieve the base, first the (base, size) pair is retrieved using prjl, then prjl is used again
to retrieve the base. If the second step is prj2, the size is retrieved.
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5.2.8 Machine ErrorCtx

The enumerated set ERROR lists all the possible errors returned to the thread in the API
model. These will be explained in detail later.

Also, the definition dipcFailures lists the failures during IPC that are beyond the deterministic
control of the abstract model. If IPC fails non-deterministically, one of these is the error.

5.3 Address Spaces

Once the context is set up, the first important aspect of L4, on which all other aspects are
based, is address spaces. Since my model does not go into the details of memory management,
a simple model of which spaces are used by the system and which of those have been initialised
suffices.

5.3.1 Machine AddressSpace

The machine SEES Kernellnformation (see 5.2.1) and AddressSpaceCtx (see 5.2.2) which
imports their abstract sets and constants. It needs to SEE both since SEES is not transitive.

Next, two variables are introduced:

e spaces represents the address spaces that have been created

e initialised_spaces represents those address spaces that are created and initialised

Invariant

Their relationship is defined in the INVARIANT clause (see 3):

INVARIANT
spaces € ADDRESS_SPACE N

initialised_spaces C spaces

There cannot be more address spaces created in the system than the system can hold, nor
can more be initialised than have been created. Being initialised automatically implies being
created.

Think of it as a total pool of pointers to address space structures being exhausted as they are
created, and initialised_spaces being an attribute of the structure.

Initialisation

Every variable in B must be initialised in a manner that establishes the invariant. Since this is
is an abstract model of the functioning of L4, one would expect the variables to be initialised
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to what the root task sets them to be before giving over control to L4.

In AddressSpace (see 5.3.1) three address spaces were reserved: kSigmaOSpace, kRootServerSpace,
kKernelSpace. These are the spaces created and initialised by the root task on start up. We
will do the same:

INITIALISATION spaces := { kSigma0OSpace , kRootServerSpace , kKernelSpace } ||
initialised_spaces = { kSigmaOSpace , kRootServerSpace , kKernelSpace }

Note the parallel composition ( || ) operator, which is the only way to compose operations
at the top specification (machine) level in B. This contrasts with the sequential composition
of ordinary programming languages.

Operations

Next we define the operations that modify the state (variables) of this machine in the OP-
ERATIONS (see 3) clause.

Since the operations are designed in such a way that satisfying their preconditions guarantees
success, they do not return any values (this is not always the case; more on this later).

The three operations we will have to perform are: creating an address space, initialising it and
deleting it. Given my current understanding of L4 and the reference manual [12, section 4.3:
SPACECONTROLJ, once an address space is initialised it cannot be uninitialised. SpaceControl
forces the UtcbArea and KernellnterfacePageArea to be valid for the call to succeed. Having
these two areas set to valid values constitutes initialisation. To invalidate them would require
passing invalid parameters to SpaceControl, which will fail. Ergo, no uninitialisation.

Since these are the first operations described in this document, let us look at them in detail.

CreateAddressSpace ( space ) =
PRE space € ADDRESS SPACE — spaces THEN
spaces := spaces U { space }
END

To guarantee the success of this operation, the address space identifier passed in must be one
of those not yet created. This becomes the precondition (see 3). In L4’s case, address space
identifiers are just pointers to address space structures and in any case, not visible at the user
level.

Once the precondition is satisfied, the new identifier is added to the set of created address
spaces.

Note that for operations, = is not purely syntactic as is the case for definitions.

InitialiseAddressSpace ( space ) =
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PRE space € spaces THEN
initialised_spaces := initialised_spaces U { space }
END

If the space identifier passed in is one of those already created, the operation succeeds and
the identifier is added to the set of initialised address spaces.

DeleteAddressSpace ( space ) =
PRE  space € spaces N\ = ( dIsPrivilegedSpace ( space ) ) THEN

spaces := spaces — { space } ||
initialised_spaces := initialised_spaces — { space }
END

Here we see a more interesting use of a precondition. To satisfy the invariant, it suffices
that any member of ADDRESS_SPACE be passed in. For the operation to make sense,
however, extra meaning is added. We would like B to (via proof obligations) force us to prove
any invocation of the operation is on an existing address space (otherwise the invocation is
superfluous).

Additionally, L4 does not allow deletion of privileged threads on the basis of them belonging
to privileged address spaces [5, SYS.THREAD_CONTROL in thread.cc|. Clearly, requiring
that space not be a privileged space as precondition to DeleteAddressSpace forces the same
behaviour as in the implementation, since in defining DeleteThread we will be asked to prove
we are not deleting a privileged address space.

5.4 Threads

Threads are an extremely important component in L4; they are the ones communicating,
using system resources, and invoking the kernel’s system calls.

Nearly all relationships in the system involve threads, making distribution of the thread model
throughout more than one machine a difficult task. Eventually, the thread functionality was
divided into three machines:

e Thread contains all aspects of threads not directly related to IPC (such as state, pagers,
schedulers, etc.)

e IpcCore contains the place holder for an operation copying one thread’s virtual registers
onto another

e IpcBase contains purely IPC-related aspects of threads, such as which thread is waiting
on another.

Since everything in the kernel is extremely intertwined, and B imposes a layered approach,
some of this distribution ended up more complex than would be expected from a greatly
simplified specification.

36



5.4.1 Machine Thread

Since the reader is now familiar with the main sections in a B machine, each variable involved
in a machine will from this point on be described one-by-one, followed by a description of its
link to previously introduced variables as described in the invariant. New sections will still
be explained as they arise.

The Thread machine models all non-IPC related functionality of threads (including that which
enables IPC functionality of course).

A very interesting abstraction that this machine provides is the lack of a single executing
thread or any mention of individual processors. There are two ways of looking at this ab-
straction, again relating to kernel vs. thread points of view (see 5.1 on page 24):

1. All threads with a running state are executing simultaneously on a magical machine
with one processor per thread;

2. From each thread’s perspective, the notion of being suspended while another thread is
running is not immediately noticeable, so each thread can believe it is executing all the
time (indeed, making threads believe this successfully is one of the roles of an operating
system).

Section: INCLUDES

The first thing to note is that the machine INCLUDES AddressSpace. That means everything
in the AddressSpace machine except for what it SEES is now visible at any stage in the Thread
machine. Since all machines must eventually be included into one, that is also the reason for
the rather verbose naming conventions.

Write access must be done exclusively using AddressSpace’s operations. The initialisations
for the two machines are composed in parallel (in the case of the B Toolkit; other tools may
compose them sequentially, which is more agreeable with a programmer’s viewpoint).

Section: PROMOTES

This brings us to the “PROMOTES InitialiseAddressSpace” clause. This means that when
Thread is included into another machine, the operation InitialiseAddressSpace will be avail-
able in addition to all the ones defined in thread. INCLUDES is not transitive for operations.
B will ask us to prove that the invariant of the Thread machine cannot be violated by any of
the promoted operations.

Variable: threads

threads C TCB

Similarly to how spaces represents created address spaces (see 5.3.1), threads represents the
set of threads created in the system. It is bound by the size of TCB, the set of all possible
threads (see 5.2.4).
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Variable: thread_gno

thread_gno € threads — GLOBAL_TNO A
kAnyGNo ¢ ran ( thread_gno ) A
kENilGNo ¢ ran ( thread_gno )

The thread number is an attribute of the thread. In abstract terms, that means it is a function
from the set of threads in the system (threads) to the set of all possible thread numbers
(GLOBAL_TNO). The function is injective (one-to-one), since no two threads’ numbers may
be identical. What is more, the function is total. All threads in the system must have an
identifier.

Note: in B, we say that a function is a member of the set of all functions meeting given
constraints, hence the membership operator (€).

The two thread numbers reserved for nilthread and anythread, kNilGNo and kAnyGNo (see
5.2.5) may not be in the range of this function.

Variable: halted_threads

halted_threads C threads

The set of all threads which are halted. With the exception of interrupt threads, this means
a thread will not enter user mode. It may be argued that interrupt threads cannot enter user
mode either due to being an abstraction of an interrupt routine, but being halted nonetheless
has a different meaning for them (it means the interrupt in question is enabled; more on this
when thread_state is covered).

Variable: active_threads

active_threads C threads N
kSigma0 € active_threads N
kRootServer € active_threads A
kIntThreads C active_threads

As the name suggests, active_threads represents the set of all threads which have gone through
the activation procedure. For the privileged threads (sigma0, the root server and interrupt
threads), this happens on kernel start up. That is why sigma0, the root server, and all
interrupt threads are always in this set.

Variable: thread_space

thread_space € threads —» spaces A
thread_space ( kSigma0 ) = kSigma0Space N
thread_space ( kRootServer ) = kRootServerSpace A
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thread_space [ active_threads | C initialised_spaces N
thread_space [ kIntThreads | = { kKernelSpace } A
thread_space ~! [ { kKernelSpace } | = kIntThreads

This function maps all threads to address spaces in the system . Since no address space may
exist without a thread in it (a space may only be created by THREADCONTROL, which also
creates a thread inside it [12, section 2.4]), the function is surjective (denoted —»).

The address spaces of sigma0 and the root server are kSigmaOSpace and kRootServerSpace
respectively.

The last three statements use the notation for relational image, which is defined as:
r{S]={y|3Ix-xeSAz—yecr}

In the case of a function, this means all y such that f(x) = y.
Note that the x — y means the pair (x,y), or “x maps to y”.

The first statement declares that for a thread to be active it must reside in an initialised
address space.

The second means all the interrupt threads reside in kKernelSpace, and the third that all
threads in kKernelSpace are interrupt threads (where ~! denotes the relational inverse).

In earlier versions of the specification, I had similar rules for the sigma0 and root server address
spaces. After much discussion, this turned out to be incorrect. Strictly speaking, .4 will allow
a thread to create another in the same address space using EXCHANGEREGISTERS [12, section
2.3]. Whether this is a good idea or not has been left to the implementers of privileged threads
to decide.

However, interrupt threads are only an abstraction of the underlying hardware, and cannot
actually run or have an implementation inserted from user mode. It is only because of this
that the above constraints hold.

Variable: thread_scheduler

thread_scheduler € threads — kIntThreads — TCB N
thread_scheduler ( kSigma0 ) = kRootServer A
thread_scheduler ( kRootServer ) = kRootServer

In L4, the scheduler is defined as part of the kernel thread control block. This means that all
threads will have some field to set. However, for interrupt threads, schedulers are meaningless
because they never actually run. So thread_scheduler maps all threads in the system except
interrupt threads to some TCB that might or might not be in the system.

There are two issues with this:

e Why would you permit a scheduler which does not exist?
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e Why not use a partial function for thread_scheduler?

The answer to the first question is invariably: efficiency and flexibility. Why put the extra
check in? Schedulers are not that important in L4. Their name is quite deceptive, since they
are not involved in scheduling anything. A thread’s scheduler is allowed to set that thread’s
scheduling parameters, such as priority. If a thread has an invalid scheduler, these parameters
simply remain the same and harm comes to the kernel. If the user depends on schedulers
being valid and mistakenly sets one as invalid or deletes a thread’s scheduler, the technical
term used is “shooting oneself in the foot”. In other words, if the user uses schedulers, he or
she should worry about managing them.

Partial functions (as opposed to the total functions introduced so far) do not have to contain
a mapping for every member in their declared domain. That is, if a function is declared

X + Y, then dom(X) C Y. I used a total function for two reasons: firstly, it models the
situation that occurs in L4 better (i.e. threads running with invalid schedulers), and secondly
because it is then simpler to check a thread’s scheduler (no need to check if the thread is in
the domain first).

The root server is initialised as the scheduler for sigma0 and itself. I believe this situation
should be maintained at all times, since otherwise the privileged threads could lose control
of the system. It is possible this constraint is unnecessary, however no information has been
presented to support this.

Variable: thread_pager

thread_pager € threads + TCB A

kSigma0 ¢ dom ( thread_pager ) A

YV kk . ( kk € kIntThreads A kk & halted_threads = thread_pager ( kk ) = kk ) A
V kk . ( kk € kIntThreads N kk € halted_threads = thread_pager ( kk ) # kk )

In L4, the process of page faults (see 2.3.4) is resolved via IPC. This means a faulting thread
needs a target to ‘send’ to (however it is the kernel which really performs the action on behalf
of the thread). This target is known as a pager.

The function is partial for two reasons:

e sigmal, being the initial system pager holding all the memory, does not have another
pager to fall back on

e until the thread is activated, the pager field in its TCB is meaningless (in fact, setting
a valid pager during a THREADCONTROL operation constitutes activation)

Since EXCHANGEREGISTERS [12, section 2.3] may set the pager to a thread which does not
exist, the range of the function cannot be enforced. Furthermore, a thread’s pager may be
deleted, and checking for this is an time-expensive operation (similar to schedulers, see 5.4.1),
making it possible for a thread to have an invalid pager at some point in time.
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Even though interrupts are abstracted as threads in the system, the abstraction is not com-
plete. This is because interrupt threads:

e never run, but also never reach a running state (page 41)

e when activated, they are halted and their pager (referred to as the handler) is set to the
thread that will handle the interrupt (interrupt handling is also implemented though
IPC)

e when inactive, their pager is set to themselves, and they are not halted

One of my initial assumptions upon examining the L4 source [5] and documentation was that
setting a (non-interrupt) thread to be its own pager should be prevented by the kernel, since
it is easily detectable, and its results are uncertain. After much discussion with L4 personnel,
a position was reached, which is worth noting:

e There is no good reason for setting a thread as its own pager, but there is also no reason
to prevent someone from doing it;

e In the current implementation, an IPC will be sent to the thread’s pager without check-
ing for who that pager is. Since the time out for that IPC is infinite, a send to itself
will cause the thread to be suspended indefinitely. The usefulness of the behaviour is
unknown, but the behaviour itself is well-defined.

Variable: thread_state

thread_state € threads — THREAD_STATE N
active_threads N thread_state ~! [ { tsAborted } | C kIntThreads A
tsRunning ¢ thread_state | kIntThreads | A

All threads in the system must be in one of the known states.

The aborted state and a thread being active are mutually exclusive, with the exception of
interrupt threads, which do not achieve a running state under any circumstances. Since they
participate in IPC, they can assume waiting and polling states, but once IPC is resolved they
return to aborted. A probable reason for this is efficiency: since the scheduler only looks for
running threads to execute, it will automatically overlook interrupt threads, at the price of
making the interrupts-as-threads abstraction less complete.

See figure 5.2 on page 30 for a diagram of possible state transitions.

Variable: threads_in_space

threads_in_space € spaces — 0 .. kMaxThreadsPerSpace N
V ss . ( ss € spaces = card ( thread_space > { ss } ) = threads_in_space ( ss ) )
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An abstract variable maintaining a count of the number of threads in each address space.
The first statement restricts the range of this function to be less than the maximum allowed
in the system (kMaxThreadsPerSpace).

The second statement is to make sure that threads_in_space maintains the correct value at
all times. Essentially, it states that threads_in_space(ss) must be equal to the cardinality of
the set of all threads in that address space.

For a relation r and set S, the domain restriction operator (>>) is defined as follows:

roS={z—ylz—yecrnyesS}

Note that strictly speaking the number of threads in ss is
card ( dom(thread_space > { ss } ) )

but for functions, the cardinality of their domain is equal to the cardinality of all the mappings.

Assertions

In B, proof can be made easier by re-stating some aspects of the invariant in different ways.
These statements may be put into an ASSERTIONS clause, and once proven may be assumed
to be true.
For threads, given that:

thread_scheduler € threads — kIntThreads — TCB A
we can conclude that:

thread_scheduler | kIntThreads | = {}

In other words, if the domain of thread_scheduler does not include kIntThreads, then no
member of kIntThreads will ever yield a result in a relational image.

Initialisation

Firstly, introduce the threads that will be known to the kernel once start-up is completed.
These are sigmal, the root server, and interrupt threads.

threads := { kSigma0 , kRootServer } U kintThreads

The threads will all be activated:
active_threads := { kSigma0 , kRootServer } U kIntThreads

Note: L4 actually allows a process of activating interrupt threads. What this means is that
while all kernel threads exist in the system to start with (i.e. they have kernel TCBs), they
do not have user mode TCBs (UTCBs). Possession of a UT'CB is what defines a thread as
active. I can only assume that this was done to conserve resources by lazy allocation, which
means that from a top-level specification’s perspective, they are all created active, since my
model does not include UTCBs.

They will be in the address spaces kSigmaOSpace, kRootServerSpace and kKernelSpace re-
spectively:
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thread_space = { kSigma0 — kSigma0OSpace ,
kRootServer — kRootServerSpace } U kIntThreads x { kKernelSpace }

Note: the Cartesian product of kIntThreads and the singleton set {kKernelSpace} is a function
mapping all the interrupt threads to that space.

Next, these threads will have thread numbers. We do not know what they are, but we do
know they must satisfy the invariant, i.e. be unique and not include anythread and nilthread:

thread_gno :€ { kSigma0 , kRootServer } U kIntThreads —
GLOBAL_TNO — { kNilGNo , kAnyGNo }

The :€ operator means assign value to any of, meaning that if we take the set of all possible
functions whose domains are { kSigma0 , kRootServer } U kIntThreads and whose ranges
are GLOBAL_TNO (but do not include kAnyGNo and kNilGNo), any of those functions
can be assigned to the variable on the left hand side of the operator. This is known as
non-deterministic assignment.

If we examine the invariant (page 38) we see that any such function is satisfactory.

An operating systems programmer might object to such a vague assignment, and indeed, it
is far from the implementation. During refinement, it would be replaced by an arbitrary
function of the implementers choosing. For an abstract model, it offers simplicity.

In my model, interrupt threads start out disabled:

halted_threads = {}

The decision is arbitrary. It is possible to include setting, say, the root server as a handler for
some interrupts during kernel start-up, but if the root server wants to handle an interrupt it
can set itself as its handler just as easily. In the interest of flexibility, I have chosen the latter.

Since interrupt threads start out disabled, they are their own pagers. Additionally, sigma0 is
the root server’s pager:

thread_pager = { kRootServer — kSigma0 } U id ( kIntThreads )
Note: id is the identity relation, defined as:

id(S)={z—z|zeS}
The root server starts up as the scheduler for sigma0 and itself [5, thread.cc]:

thread_scheduler := { kSigma0 — kRootServer , kRootServer — kRootServer }

The root server and sigma0 start with a running state, while interrupt threads start out as
aborted:

thread_state := { kSigma0 +— tsRunning , kRootServer — tsRunning }
U kIntThreads x { tsAborted }
Finally, we set the thread counters in the respective address spaces:

threads_in_space := { kSigma0OSpace — 1 , kRootServerSpace — 1 ,
kKernelSpace — card ( kIntThreads ) }
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5.4.2 Machine Thread: Operations
CreateThread

Creates an inactive thread, given a free TCB, thread number, space and scheduler:

CreateThread ( tcb , global_tno , space , scheduler )

Let us look at what is needed to guarantee the operation succeeds, which becomes the pre-
condition (see 3).

Firstly, the supplied ¢tcb must be a member of TCB (see 5.2.4), but not already assigned to a
thread in the system (a member of threads):

tcb € TCB — threads

Next, the thread number global_tno must not be one used for a thread in the system, nor one
of the reserved identifiers (nilthread or anythread):

global_tno € GLOBAL_TNO A
global_tno & ran ( thread_gno ) A
global_tno # kNilGNo A
global_tno # kAnyGNo

Since an inactive thread is being created, the only restriction placed on scheduler is that it
be a member of TCB.

The address space the thread is to be created in need not exist, but it cannot be the kernel
space (which is reserved for interrupts):

space € ADDRESS SPACE A
space # kKernelSpace

The reference manual [12] states that if the no address space is passed in to THREADCONTROL
for a creation operation, a new address space is created. The CreateThread operation takes
this into account, be creating a new address space if the one passed in is not known to the
system. If the address space is known to the system, then the total number of threads in it
must be less than the allowable maximum, or adding a new thread will exceed it:

( space € spaces = threads_in_space ( space ) < kMaxThreadsPerSpace )

Given these properties, ThreadControl is guaranteed to succeed in this model. Let us look at
what this operation does. Note that while I might imply a sequential process by going over
the statements one by one, the mode of composition in a top-level specification is parallel (see
3).

If the address space supplied is one of those in the system, increment the thread counter
(page 41). If it is not, create a new, uninitialised address space (page 35) and set the thread
counter to one:

IF  space & spaces THEN
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CreateAddressSpace ( space ) ||

threads_in_space ( space ) := 1
ELSE

threads_in_space ( space ) := threads_in_space ( space ) + 1
END

Simultaneously, add tcb to the set of threads in the system (page 37), set its thread number,
address space, scheduler, and state (aborted, since the thread will be inactive):

threads := threads U { tcb } ||

thread_gno ( tcb ) := global_tno ||

thread_space ( tcb ) := space ||

thread_scheduler ( tcb ) := scheduler

Note: || is the parallel composition operator

In the description of following operations, trivial preconditions to do with type safety (such
as tcb € TCB) will be omitted unless not obvious.

ActivateThread

In order for a thread to be able to do anything in the system, it must first be activated. This
can be done as part of creation (page 46), or as an ActivateThread operation on an inactive
thread:

ActivateThread ( tcb , space , pager , scheduler )

tcb must be an existing but inactive thread:

teb € threads A tch & active_threads
The pager must be an existing thread and the scheduler must exist and be running when the
thread starts executing [12, section 2.4]:

pager € threads A

scheduler € active_threads

Since thread activation is a part of THREADCONTROL, the possibility of the thread being
migrated while being activated exists. As for CreateThread above, we must make sure that
the thread fits into the new space:

space € initialised_spaces N
( space # thread_space ( tcb ) =
threads_in_space ( space ) < kMazThreadsPerSpace )

The operation itself updates the pager and the scheduler, adds tcb to active threads, sets its
state to tsWaitingForever, and migrates the thread if necessary.

In L4, a thread will begin waiting for an IPC from its pager straight after activation. This
is why its state begins as waiting forever. The IPC component will be initialised in Acti-
vateThread2 (see 5.5.3).

The actual migration is performed as follows:
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IF  space # thread_space ( tcb) THEN
thread_space ( tcb ) := space ||
threads_in_space := threads_in_space < { space — threads_in_space ( space ) + 1 ,
thread_space ( tcb ) — threads_in_space ( thread_space ((tcb ) ) — 1 }
END

If the designated space is not the same as the space the thread is currently in, it is assigned
to the new space.

The thread counters for the two address spaces (current and target) are updated using right
overriding (denoted < ). The exact definition is:
1 <& 1o =mr U (dom(r) < m)
The definition uses another of B’s operators, domain subtraction (<€), defined as:
Sdr={z—ylaz—yernzg¢sS}
In other words:
threads_in_space := threads_in_space <& { space — threads_in_space ( space ) + 1 ,

thread_space ( tcb ) — threads_in_space ( thread_space ((tcb ) ) — 1 }
has the same effect as:
threads_in_space ( space ) := threads_in_space ( space ) + 1 ;

threads_in_space ( thread_space ( tcb ) ) := threads_in_space ( thread_space ( tcb ) ) — 1

Note that this cannot actually be written at the top-level specification since it uses sequential
composition. Parallel composition does not allow the same variable to appear twice on the
left hand side of an expression.

CreateActiveThread

CreateActiveThread is a merger of CreateThread and ActivateThread, the only difference
being that migrating the thread is not possible as it does not exist yet.

DeleteThread

The preconditions to successful thread deletion are that the thread exist and that it is not in
one of the privileged spaces (kSigmaOSpace, kRootServerSpace, kKernelSpace).

The thread is then removed from the set of known, active, and halted threads.
Domain subtraction (see page 46) is used to remove the thread from the domains of all
thread-based functions in the machine:

thread_space = { tcb } < thread_space ||

thread_state := { tcb } < thread_state ||

thread_pager := { tcb } < thread_pager ||

thread_scheduler := { tcb } < thread_scheduler ||

thread_gno := { tcb } < thread_gno
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Furthermore, if the thread is the only one left in the address space, the address space is
deleted, otherwise the thread counter is decremented:

IF  { tcb } = thread_space ~' [ { thread_space (tcb ) } ] THEN

DeleteAddressSpace ( thread_space ( tcb ) ) ||

threads_in_space := { thread_space ( tcb ) } <4 threads_in_space
ELSE

threads_in_space ( thread_space ( tcb ) ) := threads_in_space ( thread_space ( tcb ) ) — 1
END

SetScheduler

For THREADCONTROL, modifying the thread’s scheduler is one of the possible tasks.

This operation is trivial, assuming only that the thread and the scheduler exist, and updating
the thread’s scheduler.

Migrate

This operation performs the exact same task as the migration in ActivateThread (page 45).

As the explanation progresses it becomes obvious that there are entire blocks of statements
being repeated throughout. Indeed, the next operation (MigrateAndSetScheduler) makes this
quite clear.

During the development of the specification, a certain feature of the B Method in its current
state caused a great deal of problems and excess complexity: two operations from the same
level cannot be invoked in parallel even if their statements are not related! This means that
Migrate and SetScheduler cannot be called in parallel and need a separate operation which
combines the two.

One solution to this is to defer any specific actions to refined machines as opposed to a top-
level specification, then use sequential composition in the refinements. The problem with
this is that the resulting top-level machines cannot be animated (see 1.5) in any meaningful
manner, making verification of correctness much more difficult and detracting from using the
specification as a learning tool.

MigrateAndSetScheduler

As mentioned in the previous section, this is an exact merger of Migrate and SetScheduler.
The preconditions are combined using ‘A’, and the statements of the two operations are
composed in parallel.
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SetState

As the name suggests, this sets the state state for the thread tcb. The preconditions are quite
strong, to prevent the aborted state from being involved:

o tch & kintThreads (since interrupt threads have their own meanings for states);

e state # tsAborted ; transitioning to an aborted state would mean that the thread was
somehow being deactivated. L4 does not provide any functionality to do this;

e tch € active_threads ; we do not want to artificially activate the thread, that’s what
ActivateThread was intended for

Activatelnterrupt and DeactivateInterrupt

In L4, activating an interrupt thread is done by making it halted and setting its pager to a
value other than itself. To deactivate it, the pager is set to itself and halting is reset.

In retrospect, the concept of activation for interrupt threads in my model is slightly mis-
named, since they are always part of active_threads. Think of them as enabling and disabling
interrupts.

Both operations assume that the thread passed in (¢cb) is an interrupt thread. Deactivateln-
terrupt takes no further parameters (not necessary). Activatelnterrupt requires that a thread
designated to be the interrupt’s handler is supplied, which is set to be the interrupt thread’s
pager (see page 40 for details).

UnWait

Active threads participate in IPC. This means they may assume states involving waiting for
an event (incoming IPC, delivery of outgoing IPC, or a time out). When this event occurs,
they return to whatever state is appropriate for them. For normal threads, this is running,
but for interrupt threads, this is aborted (page 40).

The operation assumes that the thread (fcb) is an existing one.

It is carried out as follows:

SELECT tcb € active_threads A tchb ¢ kIntThreads THEN
thread_state ( tcb ) := tsRunning

WHEN  tcb € active_threads N tcb € kIntThreads THEN
thread_state ( tcb ) := tsAborted

ELSE
thread_state ( tcb ) := tsAborted

END

The SELECT statement in B is similar in structure to a if-elseif-else construct in programming
languages, except that the testing order is non-deterministic. Only one of the cases will be

48



acted out: either any case where the condition matches, or the else case when none of them

do.

When the cases are mutually exclusive and the order is not important, such as is the case
here, they may be used as a simpler to read version of nested if-then-else-end blocks. They
will become more important when evaluating error conditions in API-level machines.

WakeUpAndWait

When a running thread attempts to send an IPC to another thread, one of three things
happen:

e the other thread is not waiting: the running thread polls — use SetThreadState (page
48)

e the other thread is waiting, no receive phase is included: the IPC occurs, the remote
thread is woken — use UnWait (page 48)

e as above, but a non-trivial receive phase is included: the IPC occurs, the remote thread
is woken, but the current thread starts waiting — use WakeUpAndWait

The operation takes three parameters: running-thread (the one sending the IPC), wait-
ing_thread, and wait_state (specifies what kind of waiting the sending thread is to perform).

For this operation to succeed:

running_tch € active_threads N

waiting-tchb € active_threads N

isWaiting ( wait_state ) N\

isRunning ( thread_state ( running-tcb ) ) A
isWaiting ( thread_state ( waiting_tcb ) )

Both threads must be active, the first must be running (isRunning tests for equality with
tsRunning), the second must be waiting (tsWaitingForever or tsWaitingTimeout), and the
wait_state must really be a waiting state (also tsWaitingForever or tsWaitingTimeout).

The operation overrides (see page 46) thread_state with two mappings:

e running tcb — wait_state

e for normal waiting threads: waiting_tcb — tsRunning
for interrupt threads: waiting_tcb +— tsAborted (see page 48)

Thread ExchangeRegisters

This operation comprises the thread-only functionality contained in the success path of EX-
CHANGEREGISTERS [12, section 2.3]:
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ThreadExchangeRegisters ( tcb , control , pager , unwait )

The parameters are as follows:
tcb — the thread to act on

control — a subset of EXREGS_FLAGS, representing the set of actions the operation is to
take (see 5.2.4)

pager — the pager to set the thread’s pager to, if indicated by control

unwait — a Boolean value indicating whether the target thread should be woken (exactly
like the UnWait operation); this is to correctly set the thread state if the IPC-level IpcBase-
ExchangeRegisters (see page 62) cancels the IPC waiting or polling,.

Since the model contains no specification of TCRs at the thread level, the operation does not
take an equivalent of the UserDefinedHandle parameter. Since there is also no specification
of user-level registers saved in the kernel, IP, SP and FLAGS are not passed in.

Preconditions are as follows:

teb € threads N control C EXREGS_FLAGS A pager € TCB A
teb & kintThreads N unwait € BOOL

The operation can only work on threads known to the system. Since we are not dealing
with the thread that invoked the EXCHANGEREGISTERS system call at this stage, we want to
make sure that an interrupt thread is never the target. This is because interrupt threads are
abstractions only and cannot invoke system calls, and EXCHANGEREGISTERS requires that
both threads be in the same address space.

The pager can be any TCB; no checking is performed as outlined in [5]. The unwait parameter
is a member of BOOL, which is either TRUE or FALSE.

The operation is constructed using three IF statements in parallel, corresponding to:

e setting the pager (if ex_p € control)

e halting/resuming the thread (if ex_h € control) — add the thread to halted_threads if
(ex_H € control), remove it otherwise

e resetting any waiting (if unwait == TRUE), only slightly different from UnWait in that
we know the thread is not an interrupt thread, sets the state to running if the thread
is active and aborted when it is not

DualWakeUp

Threads are not the only cause of IPC happening. When an IPC cannot be resolved imme-
diately, the situation may arise that two threads, one polling on the second and the second
waiting on the first, might be inside the system. It is then up to the scheduler to cause the
IPC to happen. When it does, both threads need to be woken up and resume running. This
is also true if the IPC fails.
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Two threads are passed as arguments: polling_thread (which must be polling) and wait-
ing-thread (which must be waiting_timeout or waiting_forever).

Since the same variable cannot occur twice on the left hand side of an assignment during
parallel composition and the threads might be interrupt threads, a select covering the four
possible cases is used, overriding thread_state with running for non-interrupt threads and
aborted for interrupt threads.

5.5 IPC

5.5.1 Machine IpcCore

This machine EXTENDS the Thread machine, meaning it INCLUDES (see 3) it and also
PROMOTES all operations.

A new definition is added for whether a thread can invoke the IPC system call (for interrupt
threads, this means whether the kernel can perform the IPC on behalf of the thread):

canIPC (t) =
t € active_threads N
(t € kIntThreads = t € halted_threads ) N
(t & kIntThreads = thread_state (t ) = tsRunning N\ t & halted_threads )

The thread must be active, running and not halted (except for interrupt threads, which must
be halted to be enabled).

The IpcCore machine does not seem very useful, seeing as it has no state and contains only
a single operation (Performlpc), which does nothing (denoted skip in B). This is because
the IpcCore operation represents the transfer of information contained in Message Registers
(MRs) from the sending to the receiving thread, but MRs do not exist in the current version
of my specification. Refinement can add these and extend the IpcCore machine to do more
(since anything refines skip, any functionality that preserves the invariant is permitted).

The decision to leave out MRs is due to them being a too large step to include in a top-level
specification. When an IPC is performed, MRs do not merely get transferred, but can also
perform grants and maps (see 2.5.1). Such functionality requires some concept of iteration
over the MRs, which cannot be done in any readable manner (if at all) in a specification
restricted to parallel composition. In refinement, sequential composition is permitted and an
elegant manner with which to do this may be devised. Unfortunately, due to time constrains
refinement was not an option.

Non-deterministic granting and mapping inside this operation could handle the possibility,
but would not give it any meaning.

5.5.2 Machine IpcBase

This machine is the basis for all state transitions during IPC. It INCLUDES IpcCore and so
builds on all machines described so far.
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It does not promote any operations, however, even though there are operations which have
nothing at all to do with IPC (such as InitialiseAddressSpace). This is due to the IPC
operations being non-deterministic (i.e. there are situations which might cause it to fail
which are not contained in this specification), which means that the first possibility of failure
is in this machine (previous operations always succeeded given the preconditions). The error
condition is stored in the Error Thread Control Register, which means some form of this TCR
had to be specified in this machine.

Unfortunately, the inability to perform two operations from the same machine in parallel
made every promoted operation forever unable to clear the Error TCR. This means local
versions which only add that functionality shadow all operations which might normally be
promoted.

The machine itself uses information on which thread is waiting/polling for which other thread
to check when to allow the IPC to occur, and handles invoking the proper state-transition
operations from Thread in these cases. It also invokes them when IPC fails.

A description of the variables and invariant follows.

Variable: thread_ipc_waiting_for

In L4, threads which are in a waiting state must be waiting for a specific thread number,
or anythread. They cannot wait for nilthread. If a thread wants to make sure the waiting
operation times out, it should wait for itself [12, section 5.6]:

thread_ipc_waiting_for € active_threads - GLOBAL_TNO A
ENilGNo ¢ ran ( thread_ipc_waiting_for )

Only active threads may participate in ipc, but they may wait for any thread number. The
reference manual states that if the partner does not exist, the IPC operation will fail. However,
the thread might exist when IPC is invoked, but be deleted before IPC completes, which is
why thread_ipc_waiting_for cannot have active_threads, or even threads as its permitted range.

Variable: thread_ipc_waiting_timeout

The function has an identical range to thread_ipc_waiting for, but specifies information on
the timeout for waiting functions:

thread_ipc_waiting_timeout € active_threads + TIMEOUT A

eZeroTimeout ¢ ran ( thread_ipc_waiting_timeout ) A

dom ( thread_ipc_waiting-timeout ) = dom ( thread_ipc_waiting_for ) A

dom ( thread_ipc_waiting_timeout ) = thread_state ~' [ { tsWaiting Timeout ,
tsWaitingForever } ]

All the threads in the domain of this variable must either be waiting with a timeout, or
waiting forever. No thread with that state must be absent, and no thread that is present may
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have a different state. Since the domain is the same as that for thread_ipc_waiting_for, the
constraint applies there as well.

Zero-timeout not be permitted, since those calls can be resolved immediately without forcing
the thread to wait.

Variables: thread_ipc_polling_on and thread_ipc_polling_timeout

The first function keeps track of which thread a tread is polling on. However, despite the
fact the thread it is polling on can be deleted, its range is a subset of threads, and not TCB.
This is due to the target thread maintaining a list of threads polling on it, which is opposite
to the way waiting works. When a thread gets deleted, its incoming queue is unwound. The
implementation source code I am basing my specification on [5] further states:

// what do we do with these guys?

I have opted to do nothing and have the Ipc time out:

thread_ipc_polling_on € active_threads —+ threads N
thread_ipc_polling_timeout € active_threads - TIMEOUT A

dom ( thread_ipc_polling_timeout ) = thread_state ~* [ { tsPolling } | A
eZeroTimeout & ran ( thread_ipc_polling_timeout ) A

dom ( thread_ipc_polling_on ) C dom ( thread_ipc_polling_timeout )

For this reason, there can be some threads in a polling state which are not actually polling
for any thread.

The second function (thread_ipc_polling_timeout) keeps track of the time-outs for currently
polling threads. All polling threads must have a timeout, even if the thread they are polling
on was deleted, otherwise they will never return to running.

Once more, the zero-timeout is not permitted, since it can be resolved immediately.

Variables: thread_recv_waiting for and thread_recv_waiting_timeout

These are the future versions of thread_ipc_waiting_for and thread_ipc_waiting_timeout, for
polling threads with a receive phase. When the send phase of IPC succeeds, a receive phase
is performed if one was requested. These variables hold those states until that point.

They are very similar to the thread_ipc_waiting variables, but:

dom ( thread_recv_waiting_for ) C dom ( thread_ipc_polling_timeout ) A

dom ( thread_recv_waiting_timeout ) N dom ( thread_ipc_waiting_timeout ) = {}

Not all polling threads will have a receive phase, and no thread must have an entry in both
the future and present waiting variables.
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Variable: thread_incoming

For any thread, the set of threads polling on it is the relational inverse of itself on
thread-ipc_polling_on:
thread_incoming € active_threads — P ( threads ) A
V&t . ( tt € active_threads = thread_incoming ( it ) =
thread_ipc_polling_on > [{ tt }])

Note: P has the same meaning as the standard notation for power set.

This variable is very helpful when it comes to modelling the details of IPC, since it enables a
much simpler model of incoming thread numbers to be derived (which makes proof obligations
simpler, which in turn makes it easier to find inconsistencies).

Variable: thread_incoming _gnos

The aforementioned model of incoming thread numbers makes checking whether or not an
acceptable thread for receiving is polling much easier.

Please note that not all variables have to make it through refinement. This is especially true
here, since L4 does not actually store the thread numbers of threads polling on another thread
separately, but it makes the model conceptually simpler.
V tt . (¢t € active_threads = thread_incoming_gnos ( tt ) =
thread_gno | thread_incoming ( tt )] )

The incoming thread numbers for a thread are just the thread number function (thread_gno)
applied to all incoming threads.

Variable: thread_error

The very simple concept of each thread having some error condition which resulted from a
previous operation:
thread_error € active_threads — FRROR

For inactive threads (which cannot execute), the mapping has no meaning and so does not
exist. Note that thread_error is not the same as the Error TCR [12], since ERROR contains
eNoError, a condition to signify success.

In L4, success does not modify the Error TCR, since by convention it is irrelevant if the system
call returned successfully. However, the success flag is contained in a register (registers are not
specified in my model). This means a refinement of the concept of errors would be necessary.

Initialisation
Initially, no thread is waiting for any other thread or engaged in IPC in any way, meaning that

all the thread_ipc_* variables as well as the thread_recv_* variables are initialised to empty
sets.

54



Since the interrupt threads, sigmal and the root server exist on start up, we want their
incoming sets to be present, but empty:
thread_incoming :€ { kSigma0 , kRootServer } U kIntThreads — { {} } ||
thread_incoming_gnos :€ { kSigma0 , kRootServer } U kIntThreads — { {} }

Any function mapping those threads to the the empty set (there is only one) will satisfy that
requirement.

As for the error condition, all existing threads (the same ones as above) start out with the
eNoError condition:

thread_error := { kSigma0 — eNoError , kRootServer — eNoError } U
kIntThreads x { eNoError }

One can see that functions are just sets of mappings in B. The mappings for sigmal and
the root server are one function, while the Cartesian product of the interrupt threads with
{eNoError} is the second function. When added together, they enforce the invariant and do
what is needed.

5.5.3 Machine IpcBase: Operations
ActivateThread?2

The new variables introduced in this machine, together with the invariant of the included
machines produce a new, larger invariant. Promotion of some operations causes the local
invariant to be violated as the operations in lower machines know nothing about it.

Operations which introduce handling of IpcBase’s variables to operations from Thread or
AddressSpace have a ‘2’ appended to their end.

The first of these is ActivateThread2, which sets up the local variables when the thread
is activated, and invokes the original ActivateThread (page 45). Their preconditions and
parameters are the same, so let us look at the differences.

Recall that in ActivateThread, the thread state was set to waiting forever, but no mention of
who to wait for was made. At the IPC level we can now say which thread the waiting will be
for ... its pager:

thread_ipc_waiting-timeout ( tcb ) := elnfinite Timeout ||

thread_ipc_waiting_for ( tcb ) := thread_gno ( pager )

The thread needs to receive a message from its pager before starting execution, so it must
wait forever for it.

Since the error condition is meaningful for active threads, a condition must be set. No error
has occurred, so the eNoError condition is used:

thread_error ( tcb ) := eNoError

Upon activation, the variables pertaining to incoming threads (those polling on the one cur-
rently being activated) must be set:
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thread_incoming ( tcb ) := thread_ipc_polling.on ~—* [ { tcb } ] ||
thread_incoming_gnos ( tcb ) := thread_gno [ thread_ipc_polling.on ~* [ { tcb } ]]

For thread_incoming, a new mapping is added: from the thread being activated (tcb) to the
set of all threads polling on it (via relational inverse).

For thread_incoming_gnos, we would like to simply set it to be the numbers of whatever
thread_incoming(tcb) was set to. Since this is parallel composition, using thread_incoming on
the right-hand side of an assignment would refer to its old value, the expression is repeated
and a relational image on thread_gno gives the desired result.

CreateActiveThread2
This operation adds the same steps as ActivateThread does to ActivateThread2 to Create-
ActiveThread.

The preconditions and parameters are the same.

DeleteThread2

The preconditions are the same as in DeleteThread (page 46), and it still takes a single
parameter: tcb.

Apart from invoking DeleteThread, it has to deal with deletion with regard to the variables
in this machine.

Apart from the obvious domain subtraction of {tcb} from thread_ipc_waiting_*,
thread_ipc_polling_timeout, thread_recv_* and thread_error, some variables require a more
complex approach:

As mentioned on page 53, L4 stores the polling threads in the receivers incoming queue, so it
does not suffice to delete the thread from another’s incoming set, since its own incoming set
might not be empty:

thread_ipc_polling_on := { tcb } < thread_ipc_polling_on & { tcb }

The application of the domain subtraction (<, precedence is left-to-right) removes all map-
pings denoting this thread is polling on another one (there is only one). Then, the application
of range subtraction (&) removes all mappings denoting another thread is polling on this one.
Those threads that were polling on the one being deleted are now stranded until their IPCs
time out (this might not be the case with the newest kernels, see page 53).

Range subtraction is defined as follows:
reS={z—ylz—yecrny¢sS}

This resolves the situation of who is polling on whom. However, the incoming sets still have
to be adjusted:

thread_incoming :=
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{ aa , bb | aa € dom ( thread_-incoming ) — { tcb } A
bb € P ( TCB ) A
bb = thread_incoming (aa ) — { tcb } } |
thread_incoming_gnos :=
{ aa , bb | aa € dom ( thread_-incoming_gnos ) — { tcb } A
bb € P ( GLOBAL.TNO ) A
bb = thread_incoming-gnos ( aa ) — { thread_gno ( tcb ) } }

The thread has to be removed from both the variables’ domains and simultaneously be re-
moved from the incoming sets of every active thread in the system. The only way such a
broad change can be made in B is to use a set comprehension.

The notation is very similar to the list comprehensions used in Haskell, and its definition is
as follows:

{z | P} yields all z that satisfy P

Note that (aa,bb) and aa — bb are synonymous. Their variation in appearance is the result
of the B Toolkit’s mark-up tool.

Let us look at the first set comprehension in detail (the second is analogous, but removes a
thread number from a different variable). We want the set of all mappings aa +— bb, such
that:

e The function domain is still represented, with the exception of tcb, whose mappings are
removed: aa € dom ( thread_incoming_gnos ) — { tcb }

e The function range still has the same type, i.e. is a subset of TCB:
bb € P ( GLOBAL-TNO )

e Finally, we want tcb to be removed from all values thread_incoming may assume.

JustWait

The first of the actual operations enabling IPC. This deals with the case when a thread
requests an IPC operation consisting of a receive phase only, but no thread in its incoming
sets is available to receive from. This results in the thread waiting.

Given the three parameters tcb (the thread wishing to receive), timeout and fromSpecifier
(who it is willing to receive from), the preconditions are as follows:

e the thread can participate in IPC (see canIPC definition, page 51)

e timeout is either finite or infinite, but not zero (instant time-out, no point in calling
this operation)

e fromSpecifier is not nilthread, and is either one of the thread numbers known to the
system (thread_gno[threads]) or it is anythread
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e a fromSpecifier of anythread implies that there are no incoming threads for the requester
(otherwise, the thread would not need to wait)

e any other fromSpecifier is not in the set of incoming thread numbers (again, waiting is
what this operation is about)

The work done by the operation is minimal. It updates thread_ipc_waiting_for and its time-
out equivalent (page 52) to indicate the thread is waiting and who it is waiting for. It also
uses SetState (page 48) to set the thread’s state to tsWaitingForever or tsWaiting Timeout
depending on the value of timeout.

SetUpReceivePhaseAndPoll

We have covered what happens when a thread wants to receive and cannot. This operation
handles the case of when the operation wants to send but cannot (either the remote thread
is not waiting, or it is not waiting for the sending thread).

Parameters: tcb_from and tcb_to (sending and target threads), poll_timeout, recv_timeout
(time-out for the future receive phase), fromSpecifier (who the thread is willing to receive
from in the receive phase, or nilthread if there is no receive phase).

As in JustWait, tcb_from must be able to perform IPC. The target must be an existing thread.
While the poll time-out must not be zero, the receive timeout is only restricted if fromSpecifier
is not nilthread. The actual fromSpecifier must be a thread number of an existing thread.

In order to verify that the operation happens in the aforementioned circumstances, the fol-
lowing must be true:

( tcb_to € dom ( thread_ipc_waiting_for ) =
thread_ipc_waiting_for ( tcb_to ) # thread_gno ( tcb_from ) A
thread_ipc_waiting_for ( tcb_to ) # kAnyGNo )

In other words, if the target thread is in a waiting state, then it must not be waiting for
anythread (since this one will fulfil the criterion) and it must not be waiting for from_tcb’s
number.

Once that is established, the operation can proceed successfully.

The operation updates thread_ipc_polling * to reflect its polling information, and also adds
from_tch and its thread number to the incoming sets of tcb_to.

If fromSpecifier is not nilthread, thread_recv_* is updated with the future waiting information.

JustReceive

Having covered the cases where IPC cannot happen, let us look at the simplest case of IPC
occurring: the thread requests an IPC with only a receive phase, and a suitable thread is in
its incoming set.
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Like JustWait, it takes two parameters (whose meaning is the same): itcb (the invoking
thread) and fromSpecifier (who it wishes to receive from). It does not need a time-out as the
operation will go ahead immediately.

The value of fromSpecifier must not be nilthread, and must either be anythread (in which
case the incoming set must not be empty) or a thread number already in the incoming set.

The operation may then go ahead. However, it might not succeed due to aspects beyond the
control of the current model (such as Xfer time-outs or the operation being aborted halfway).
This failure is modelled by non-determinism and is the cause of putting the thread_error
variable in this machine (see page 54).

The polling thread which is allowed to send is again chosen non-deterministically (since sets
have no implicit ordering):
ANY  tcb_from WHERE  tcb_from € thread_incoming ( itchb ) A
( fromSpecifier # kAnyGNo =
thread_gno ( tcb_from ) € thread_incoming-gnos ( itcb ) )

In other words, choose any of the threads in the incoming set, with the extra constraint that
if fromSpecifier is not anythread, that thread’s number must be in the set of incoming thread
numbers for the receiving thread. The preconditions guarantee that a thread that satisfies
this constraint actually exists.
Regardless if the IPC succeeds or fails, the following happens:
thread_ipc_polling_on := { tcb_from } <4 thread_ipc_polling_on ||
thread_ipc_polling_timeout := { tcb_from } <4 thread_ipc_polling_timeout
The sending thread will no longer be polling at the end of the operation.

thread_incoming ( itch ) := thread_-incoming ( itcb ) — { tcb_from } ||

thread_incoming_gnos ( itch ) := thread_incoming_gnos ( itcb ) — { thread_gno ( tcb_from ) }
Since it will no longer be polling, it is removed from the receiving thread’s incoming sets.
thread_recv_waiting_timeout := { tcb_from } < thread_recv_waiting_timeout ||

thread_recv_waiting_for := { tcb_from } < thread_recv_waiting_for

Again, since it will not be polling, the future settings for its receive phase will no longer be
applicable. If the IPC succeeds, they will be used to set up the new receive phase for the
thread. If IPC fails, they will be discarded.

Now then comes the point where the IPC succeeds or fails. This is done using the non-
deterministic CHOICE path1 OR path2 END construct. During animation, the user is asked
to choose the path. During proof, both branches are checked to see if they preserve the
invariant.

Let us examine the success path for IPC.

Firstly, the IPC transfer is performed and the error fields for both threads are cleared:
PerformIPC ( tcb_from , itch ) ||

thread_error := thread_error < { itcb — eNoError , tcb_from — eNoError }
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Then, if the sender had a receive phase waiting, set that up (using identical statements to
those in JustWait on page 57). Note that the receiving thread’s state does not change. It
was either running or an activated interrupt thread, and remains so.

If the sender does not have a receive phase waiting, its waiting state is cancelled using UnWait
(page 48).

On the other side of the OR, the failure path: the sender’s waiting state is cancelled using
UnWait and an error is picked non-deterministically among the possible unpredictable IPC
errors (see 5.2.8) and assigned as an error indicator for both threads.

WakeDest ThenWait

If a thread wishes to send and the second thread is waiting, the IPC occurs immediately, the
destination thread is woken up, while the source thread starts waiting (if a receive phase was
specified). In L4, a thread switch to the destination is also performed.

The precondition combines aspects of the previous IPC operations:

e The destination must be waiting for either the source’s thread number or anythread;
e The fromSpecifier must be that of an existing thread, nilthread or anythread;

e A non-nilthread fromSpecifier indicates a receive phase for the source and so recv_timeout
must not be zero;

e There is no polling timeout, since the operation goes ahead immediately.

This time there are no common items between the success and failure paths. The non-
deterministic CHOICE is made once more.

The success path begins as previously, by performing the IPC transfer and clearing the error
indicators for both threads.

If teb_from (the source thread) did not request a receive phase, the operation can be quickly
finished by domain subtraction of tcb_to from thread_ipc_waiting * and using UnWait to
cancel its waiting state.

If it did request a receive phase, then the situation is more complicated. The destination still
has to be removed from thread_ipc_waiting_*, but now the source thread must also be inserted.
The first half of the IF statement is presented below, for when the time-out is infinite. The
second half is analogous, but the timeout is finite and so the state will be ts Waiting Timeout.

thread_ipc_waiting_for := { tcb_to } <4 thread_ipc_waiting_for U
{ teb_from — fromSpecifier } ||
IF  isInfinite ( recv_timeout ) THEN
thread_ipc_waiting_timeout :=
{ teb_to } <4 thread_ipc_waiting_timeout U { tcb_from — elnfinite Timeout } ||
WakeUpAndWait ( tcb_from | tcb_to , tsWaitingForever )
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WakeUpAndWait (page 49) is used to wake up tcb_to, and make tcb_from with one of the
time-outs.

The failure path on the other hand just removes the destination from thread_ipc_waiting_*,
picks an error and sets it as the error attribute for both threads, and also uses UnWait on
the destination thread.

ResolvelPC

Given the above operations, the situation where one thread; is polling on threads, while the
latter is waiting for the former. Since neither of them can execute, the kernel needs a way to
internally perform the IPC, which is what this operation is for.

ResolvelPC(tcb_from, tcb_to) requires that:

Both threads are active;

The sender is polling and the receiver is waiting;

The sender is polling on the receiver;

The receiver either accepts anythread or the receiver’s thread number;
The non-deterministic IPC part decides between:

e Performing the IPC transfer and clearing the error attribute for both threads or

e Not doing anything, choosing an error non-deterministically and assigning it as the error
indicator for both threads.

The rest of the statements are common to both success and failure paths and consist of
removing both threads from the state variables (including removing the sender from the
receiver’s incoming sets). This has been covered in previous operations in this machine.

TimeoutPoll

When the kernel finds a thread that’s been polling for longer than its time-out value, a time-
out occurs. Since the model abstracts away exact values for time-outs, this must be done
non-deterministically. This operation picks any thread which is polling with a non-infinite
time-out and times it out. If such a thread does not exist, it does nothing (skip).

Of course, non-determinism is not random, it just states that the decision algorithm is not
specified at this level. During animation, the user is asked to be that algorithm (see 1.5).

The operation removes the thread from the state variables (covered previously) and sets its
error attribute to eSendTimeout.
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TimeoutWait

This operation is the equivalent of TimeoutPoll, but times out a thread which is waiting with
a finite time-out.

SetError

SetError provides a way for operations in higher-level machines to set the error attribute for
an active thread without actually doing anything. This is used for example, to signal that a
thread lacks necessary privileges to perform an operation.

IpcBaseExchangeRegisters

When EXCHANGEREGISTERS functionality was last described (ThreadExchangeRegisters,
page 49) only the functionality pertaining directly to threads and state was covered. As
the reference manual [12, section 2.3] states, EXCHANGEREGISTERS can be used to cancel or
abort ongoing IPCs. Now that the IPC state transitions are available, the IPC functionality
in EXCHANGEREGISTERS can be modelled.

It takes one fewer parameter than ThreadExchangeRegisters, since it is the one that decides
whether a waiting/polling thread is to be woken up.

The preconditions, with the exception of the unwait flag are identical.

The functionality at the IPC level consists of the following bits in control:

e If S = 1, a currently ongoing send IPC operation will be aborted, while an IPC send
operation waiting to happen will be cancelled;

o If R =1, as above, but for receiving IPC.

In the current model, bits are not used. Instead, the bits are represented by set membership
of ex_§ and ex_R in control.

If neither are present, the operation invokes ThreadExchangeRegisters with unwait set to
FALSE (do not change the state) and clears the error attribute.

If ex_S is present, the operation is removed from the state variables to do with polling, as
well as from the incoming set of the thread it is polling on. Since at the top specification
level in B operations happen instantaneously, it is impossible to determine whether the IPC
operation was cancelled or aborted, so a non-deterministic choice is made and becomes the
value of the thread’s error attribute. ThreadExchangeRegisters is invoked with the unwait
flag equal to TRUE, forcing the function to be awakened.

If ex_S is present, events proceed as above, except the thread is removed from state variables
related to waiting.
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DeleteThread
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CreateThread

DeleteThread

|

DeleteThread

Figure 5.3: Possible state transitions in the model and operations which cause them.

The error additions to Thread’s operations

In order for operations which complete successfully to clear the error attribute of a thread,
they need to be extended with that functionality at this level. Their preconditions are almost
the same as their Thread counterparts’, and the operation body invokes them directly. The
only difference is that they need to take an extra parameter (itcb) in order to know which
thread’s error attribute should be cleared. The digit ‘2’ has been appended to their names.
If it wasn’t for the error attribute being in this machine they would have been promoted.

They are: InitialiseAddressSpace2, CreateThread2, SetScheduler2, Migrate2, MigrateAnd-
SetScheduler2, ActivateInterrupt2 and DeactivateInterrupt?2.

Updated state diagram

Now that all the core functionality present in the model has been defined, a more accurate
view of state transitions, such as that in figure 5.3 can be derived.
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5.6 API

5.6.1 Machine WeakSyscall

All the functionality that is present in the model has now been defined. The final level is
to determine which bit of functionality to use when, and build upon the operations to allow
them to take thread numbers (like L4 system calls) instead of internal TCBs as they did
before this point.

Since the resulting operations would be extremely long, an extra machine in which operations
add functionality but as little error handling capability as possible has been added below the
API level. Some of the resulting operations are quite long and complex despite this.

The machine naturally INCLUDES IpcBase (see 5.5.2), but it also promotes the following
operations:
e SetError - to allow the API machine to handle errors;

e TimeoutWait, TimeoutPoll and ResolvelPC - while not presented in the L4 API, pro-
moting them to the API level allows for more effective animation;

e InitialiseAddressSpace2 and IpcBaseExchangeRegisters - the invoking operations in the
API machine are not too long, making the extra level of indirection unnecessary.

To prevent namespace collisions (there is only one, after all), operations in this machine are
prefixed with “Weak” .

WeaklIpc

This operation has moderate error-handling capability, which makes it very long and riddled
with IF statements. See figures 5.4 and 5.5 for the exact flow of statements inside it. All
syntax used in these machines has already been introduced and all control flow decisions are
based on preconditions of the invoked operations, so diagrams will be of more value than a
textual description.

Parameters:

e jlch - the thread invoking the operation
e to_gno - the thread number of the target thread or nilthread if no send phase
e fromSpecifier - who itcb is willing to receive from, nilthread if no receive phase

e send_timeout and recv_timeout - how long the thread is willing to wait for sending and
receiving

Non-trivial preconditions:

e If to_gno is not nilthread, it must be a number of an existing thread;
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destination is nilthread and
fromSpecifier is not nilthread

fromSpecifier is anythread

oA

. . . . fromSpecifier is in
itcb's incoming set is empty itc's incoming set

es
no \ y yes

JustReceive recv_timeout is zero JustReceive
error: JustWait

eRecvTimeout

Figure 5.4: The receive phase only section of Weaklpc

e fromSpecifier is either the thread number of an existing thread in the system, nilthread

or anythread.

The error-handling capability greatly reduces preconditions.

The body of the operation is divided by a SELECT statement into three cases:

e No send phase and no receive phase — eNonExistingPartner is set for itcb’s error at-

tribute;
e No send phase, but a receive phase — described in figure 5.4

e A send phase and optional receive phase — described in figure 5.5.

Note that the diagrams denote the functionality contained in the operation rather than the
exact one-for-one correspondence with the B specification. The B specification is longer due
to statement duplication being sometimes unavoidable, and sometimes helpful with generat-
ing easier-to-discharge proof obligations. This also makes it more confusing, making simple

diagrams more helpful.

WeakDeleteThread
This operation adds the following to DeleteThread2:

e The thread to delete (dest) is now chosen using its thread number;

e The invoking thread is passed in as itcb;

e The precondition requires that the invoking thread reside in a privileged address space.
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destination is not nilthread

|

destination is waiting
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destination waiting for no
source or anythread
/ \
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fromSpecifier is nilthread fromSpecifier is nilthread
or recv_timeout is zero or recv_timeout is zero
yes no /) yes
Error:
WakeDestThenWait eSendTimeout SetUpReceivePhaseAndPoll

Figure 5.5: The send phase with optional receive phase section of Weaklpc

WeakModifyThread

This operation manages thread activation, setting the scheduler and space migration.

Parameters:

e jtcb — invoking thread

e destNo — thread number of target thread

(or nilthread if the address space will not change)

schedNo — thread number for the scheduler (nilthread if no modification)

e pagerNo — thread number for the pager (nilthread if no modification)

spaceSpecifier — a thread number of a thread in the address space we want to specify

The operation does not perform any error handling and its preconditions imply a successful

outcome:

e ijlchb is an active thread in a privileged address space;
e destNo is a thread number of an existing thread;

e Neither spaceSpecifier, schedNo nor pagerNo may be nilthread;

e Modification of the address space (spaceSpecifier # nilthread) implies that fromSpecifier
is a thread number of an existing thread. The same conditions apply to modifying the

pager and scheduler for pagerNo and schedNo respectively;
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e If the thread is to be activated (target is not active and pagerNo # nilthread) then the
following conditions must hold: a schedNo of nilthread implies that the scheduler will
not be modified and the thread’s existing scheduler must be active, while a schedNo
that is not nilthread implies that the new scheduler must be active. An active scheduler
is a prerequisite for activation (see ActivateThread on page 45);

e If migration is necessary (the address space indicated by spaceSpecifier is different than
the thread’s current space) requires that the target space for migration can hold the
target thread.

Three possible branches in the function body exist. Firstly, if all the modification specifiers
(spaceSpecifier, schedNo and pagerNo) are nilthread, the function modifies nothing, and so
skips.

When a pager change is requested (pagerNo # nilthread), all cases include thread activation
using ActivateThread2 (page 55). For all the cases, the target thread is the one whose number
is destNo, and the pager is the thread with pagerNo. For the other two parameters (space
and scheduler), four cases are covered given two possibilities for each:

o If spaceSpecifier is nilthread no migration is performed, space is the address space of
the target thread. Otherwise, space is the space indicated by spaceSpecifier;

e If schedNo is nilthread, scheduler is the thread’s current scheduler. Otherwise, it is the
thread whose number is schedNo.

When no pager change is necessary, the operation either performs a migration (Migrate2),
a change of scheduler (SetScheduler2), or both (MigrateAndSetScheduler2), depending on
whether schedNo, spaceSpecifier, or neither are nilthread (respectively).

IntThreadControl

Like in the L4 source code [5, interrupt.cc|, I have put the equivalent of the THREADCONTROL
system call for interrupt threads in a separate operation. Interrupt threads experience a
different view of THREADCONTROL: either they are disabled (by setting the thread’s pager
to itself) or disabled (by setting it to any other thread).

This operation combines Activatelnterrupt and DeactivateInterrupt (page 48) and provides
the functionality of specifying the threads by number.

The operation, as dictated by the THREADCONTROL specification [12] is limited to privileged
threads only. Again, since there is no non-determinism in its specification, satisfying the
preconditions guarantees success.

WeakCreateThread

This operation constitutes the thread-creating portion of THREADCONTROL. Its actions are
as follows:
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e If the pager number supplied is nilthread, the thread is created inactive (CreateThread?2).
If the space specifier is equal to the target thread number, a new address space is chosen
non-deterministically and passed in as space. Otherwise use the address space selected
by spaceSpecifier;

e If the pager number is not nilthread, then proceed as above, but create an active thread
(CreateActiveThread2) and pass the pager as another parameter.

5.6.2 Machine API

This is the topmost machine in the specification. It INCLUDES WeakSysCall and all the
context machines.

Operations in API are either direct equivalents of L4 system calls, or operations representing
system internals for use in animation. Their only real task at this level is to provide pre-
condition support to lower-level operations (such as those in WeakSyscall) and pick which of
these operations to invoke. They are very simple, if sometimes long, and are better examined
directly (see appendix A).

What is worth noting however is that the top-level system-call operations still have precon-
ditions: the invoking thread must be active and running, otherwise the system scheduler is
fundamentally broken and nothing will work.
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Chapter 6

Discussion and Critique

Completeness

The model presented in chapter 5 represents nearly all the behaviours in the L4 microkernel
at an abstract level. Some behaviours, such as state transitions, are modelled accurately,
while others, such as memory management, are modelled using non-determinism.

Since this particular model did not make it into the refinement stages, these behaviours remain
non-deterministic.

In retrospect, obtaining the release version of L4 [5] at the beginning of the thesis (February-
March 2004) and choosing not to follow updates beyond that point caused some inconve-
niences. While helpful at the beginning, near the end it was obvious that some features which
were unimplemented or ignored in my version had in fact been implemented. Apart from the
lack of TPC redirectors (see 5.1, page 23) no harm seems to have been done.

Unnecessary constraints

L4 is unlike any system that I have modelled before in B. Unlike those systems (e.g. reservation
systems), L4 does not place the same emphasis on the integrity of data contained inside it.
For example, a thread’s scheduler can be any thread, even one that has not yet been created.
The same goes for the pager. This means there can be threads running without pagers
and schedulers or worse, with invalid ones. Naturally this is done to improve efficiency (the
number one priority in L4): when deleting a thread, looking through all the other threads
trying to see which one of those has the deleted thread as a pager is slow. It is better to
leave it and re-evaluate the issue when it comes up again (e.g. when a page fault occurs).
These situations can be prevented by using thread versions in L4, but those too are left to
the person using the kernel to write an OS.

My initial understanding of 1.4 did not match the above description, and I tried to assert
“sane” and “logical” conditions upon the kernel. When closer examination revealed these
constraints unnecessary, they had to be removed. Without someone with a great deal of L4
internals experience, it is impossible to be sure all of them were removed.
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This is not to say that putting some of those conditions into the kernel would actually be
a bad idea. I believe that simple-to-enforce constraints that can prevent problems later
(such as a thread being its own pager for non-interrupt threads) could easily be added. My
understanding of the view the L4 community holds on the issue is “if you allow one, you allow
them all”. Adding these helpful constraints all through the kernel will definitely slow it down
a bit.

Structure and animation

In the goals for this model (page 24), the ability to animate it is listed. This, while useful
for learning and testing correctness, became a great inconvenience for structuring the devel-
opment. Animation can only be done at the top specification level. The top specification
level only allows parallel composition. This means to animate concepts which are difficult or
impossible using parallel composition means to create statement and operation duplication
(page 26), highly complex statements (which are difficult to prove later), or non-determinism
to model that which cannot be done in parallel.

While following that path will lead to the same destination, it will take a very long time.
This is compounded by the fact that introducing large concepts all at once creates difficult
to discharge proof obligations, making consistency proof a painful experience.

The other way of doing things is to model the top layer as purely non-deterministic. For
example, this means that given a function f and the need to both change f(a) and f(b),
instead of using mappings and right overriding, one can simply assign a new function non-
deterministically which has the desired properties.

This would render the top-level specification next to useless for animation, since it could only
check user input for validity, and inputting whole functions by hand, while very educational,
does not allow animation to be efficiently used.

However, the top-level specification will be simpler, hopefully easier to complete, and easier
to prove consistent. Then refinement, with its sequential composition can be employed.

While I cannot guarantee that this approach will yield better results than the one employed
in this thesis, it could perhaps yield them faster.

The future of the B Method is Event B, which takes the alternate solution to a complete
extreme, and any further attempts to model systems such as this one should definitely consider
using it instead.

Proof and consistency

Presently, all machines below and including Thread have been proven to be consistent. Proof
of IpcBase and machines above it has not been completed due to the complexity of the proof
obligations (which means they cannot be discharged automatically) and the outdated proving
system available in the B Toolkit.

The system requires that when a proof obligation cannot be discharged because a proof
path is not available, new rules must be added into the system. Since proof is purely the
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rewriting of sequences of tokens, inserting these new rules must be done extremely carefully, or
something which is false can be proven as true. Additionally, the automatic prover often goes
into an infinite loop on user rules, making discharging proof obligations a very long-winded
experience.

There is a better way however. The next incarnation of the B Toolkit, Atelier B [4] provides
a completely different method of interactive proof based on suggesting and then proving
hypotheses. This means the user need only add rules when strictly necessary. Even then,
Atelier B provides a way to prove the rules themselves.

Unfortunately, Atelier B is not a free tool, and its licenses are only available while on the
university network. Furthermore, it was not functional throughout the year and I have had
very little experience with it, not enough to convert the entire project to it so late in the year.

Atelier B and the B Toolkit are not entirely compatible when it comes to the B syntax. Also,
the University does not have a licence for the animator plug-in, thereby making one of my
primary goals impossible to achieve.
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Chapter 7

Conclusion

A formal model of the L4 microkernel API has been presented, along with several aspects
of its internal structure and functioning. It is well-documented and may be animated to
further check for correctness. Proof of consistency has not been completed, but should not
be attempted without moving the development to the new proof system [4]. Refinement has
not been attempted, but the specification has been designed in such a way as to make this as
painless an experience as possible.

7.1 Future Work

7.1.1 Complete Proof of Consistency

Now that Atelier B is running and available, proving the entire specification consistent can
be completed. Moving it over to Atelier B, the animation component is lost, so modifications
can be made to make proof even easier. Features can be removed and added into refinements,
etc.

7.1.2 Verifying Correctness

I have spend a great deal of time trying to understand the L4 internals and how they apply
to the API. Despite best efforts, it is quite likely not everything that the model does reflects
what the system should be doing. Occasionally during discussions with L4 personnel, what
this the correct action was could not easily be decided.

The difference was that during those meetings no model of L4 existed. A model can resolve
many such arguments once it is decided by a majority to be correct. If it is not correct, it
can be modified, until agreement is reached.
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7.1.3 The L4 Pilot Project

Once the slice [21] is completed, my model can aid in the decision which part of the system
will be next to undergo the complete verification procedure. Once this is done, the model can
form a basis for the next slices (which will have to be converted to Isabelle/HOL) and then
retired. Alternatively it can be kept in use as a live reference to the system.

The new security API [16] is also currently beginning development, which can slot into the
new model, be helped or inspired by the model, or even use the model as a guide for what
not to do.

7.1.4 Further Research Using the B Method

As discussed in 6 (page 69), the fact L4 emphasizes efficiency above all else makes it difficult
to think about in terms of formal verification. It is possible to sacrifice some of this efficiency
and still obtain a robust kernel. A possible direction for future research is to use Event B
to model a slightly different kernel than L4 itself (but still inspired by it), call it BL4. This
way some kind of verified kernel might be produced faster than trying to formally verify all
the intricacies of speed optimisations within L4, while avoiding the problems associated with
classical B.
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Appendix A

Final B Specification

A.l1 API

MACHINE API
SEES

FpageCtz |
Bool_ TYPE

INCLUDES

Kernellnformation , ThreadldCtx , ThreadStateCtr , AddressSpaceCtx
TimeoutCtz , ThreadCtx , ErrorCtx , WeakSyscall

PROMOTES

An action performed by the scheduler. Promoted for purposes of animation.

Resolvel PC

OPERATIONS

Note: Certain preconditions must hold even at the top level, such as the fact that a thread which
should not be scheduled isn’t. If the schedule operation is used, then these conditions will be
satisfied. Type information must also be assumed.

Ipc (iteh , to_gno , fromSpecifier , send_timeout , recv_timeout ) =
PRE  canIPC ( itch ) A to_gno € GLOBAL_TNO A fromSpecifier € GLOBAL.TNO A
send_timeout € TIMEOUT A recv_timeout € TIMEOUT
THEN
SELECT to_gno = kAnyGNo THEN
SetError ( itch , eSendNonFEzistingPartner )
WHEN  fromSpecifier ¢ ( thread_gno [ threads | U { kAnyGNo , kNilGNo } ) THEN
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SetError ( itcb , eRecoNonFEzistingPartner )
WHEN  to_gno # kNilGNo A to_gno & ran ( thread_gno )

SetError ( itch , eSendNonFExistingPartner )
ELSE

THEN

WeaklIpc ( itch , to_gno , fromSpecifier , send_timeout , recv_timeout )
END

END ;

This is not a system call, but represents the timing out of a single IPC for purposes of animation
(this is performed internally to L4 by the scheduler.

TimeoutIPC =
CHOICE
TimeoutPoll
OR
Timeout Wait
END ;
ThreadControl ( itch , destNo , spaceSpec , schedNo , pagerNo ) =

PRE itch € active_threads A thread_state ( itch ) = tsRunning A
destNo € GLOBAL_TNO N

spaceSpec € GLOBAL_-TNO A
schedNo € GLOBAL_TNO A

pagerNo € GLOBAL_TNO
THEN

SELECT - ( dIsPrivilegedSpace ( thread_space ( itch ) ) )
SetError ( itcb , eNoPrivilege )

WHEN  spaceSpec = kNilGNo THEN
Thread deletion.

IF

THEN

destNo € ran ( thread_gno ) A destNo # thread_gno ( itch)

THEN
IF  thread_space ( thread_gno ~

L' ('destNo ) ) # kSigmaOSpace N
thread_space ( thread-gno ~* ( destNo ) ) # kRootServerSpace A

thread_space ( thread_gno —' ( destNo ) ) # kKernelSpace
THEN

WeakDelete Thread ( itcb , destNo )
ELSE

Cannot delete privileged thread or self

SetError ( itch , eNoPrivilege )
END

ELSE
SetError ( itchb , eUnavailableThread )
END

WHEN  spaceSpec # kNilGNo A destNo & ran ( thread_gno ) THEN
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Thread Creation

SELECT  spaceSpec = kAnyGNo THEN
SetError ( itch , eInvalidSpace )
WHEN  pagerNo = kAnyGNo THEN
SetError ( itch , eUnavailableThread )
WHEN  schedNo = kENilGNo THEN
SetError ( itch , eInvalidScheduler )
WHEN  schedNo = kAnyGNo THEN
SetError ( itch , eInvalidScheduler )
WHEN  pagerNo # kNilGNo A pagerNo & ran ( thread_gno ) THEN
SetError ( itchb , eUnavailable Thread )
WHEN  schedNo # kNilGNo A schedNo & ran ( thread_gno ) THEN
SetError ( itch , eInvalidScheduler )
WHEN  spaceSpec = destNo A spaces = ADDRESS_SPACE THEN
SetError ( itchb , eOutOfMemory )
WHEN  spaceSpec # destNo A spaceSpec & ran ( thread_gno ) THEN
SetError ( itch , eInvalidSpace )
WHEN  pagerNo € ran ( thread_gno ) A
thread_space ( thread-gno —* ( spaceSpec ) ) & initialised_spaces
THEN
SetError ( itch , eInvalidSpace )
WHEN  pagerNo € ran ( thread_gno ) A
thread_gno ~* ( schedNo ) & active_threads
THEN
SetError ( itch , eInvalidScheduler )
WHEN  spaceSpec € ran ( thread_gno ) A
threads_in_space ( thread_space ( thread_gno
= kMazThreadsPerSpace
THEN
SetError ( itchb , eOutOfMemory )
ELSE
WeakCreateThread ( itch , destNo , spaceSpec , schedNo , pagerNo )
END
WHEN  spaceSpec # kNilGNo A destNo € ran ( thread_gno ) A
thread_gno ~' ( destNo ) & kIntThreads THEN

—1 ( spaceSpec ) ) )

Thread Modification - normal.

SELECT  spaceSpec = kAnyGNo THEN
SetError ( itch , eInvalidSpace )
WHEN  schedNo = kAnyGNo THEN
SetError ( itch , eInvalidScheduler )
WHEN  pagerNo = kAnyGNo THEN
SetError ( itchb , eUnavailable Thread )
WHEN  spaceSpec # kNilGNo A spaceSpec & ran ( thread_gno ) THEN
SetError ( itch , eInvalidSpace )
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WHEN  schedNo # kNilGNo A schedNo & ran ( thread_gno ) THEN
SetError ( itch , eInvalidScheduler )

WHEN  pagerNo # kNilGNo A pagerNo & ran ( thread_gno ) THEN
SetError ( itch , eUnavailableThread )

WHEN  thread_gno ~* ( destNo ) & active_threads A pagerNo # kNilGNo A
= ( schedNo # kNilGNo =
thread_gno ~* ( schedNo ) € active_threads )

THEN
SetError ( itch , eInvalidScheduler )

WHEN  thread-gno ~! ( destNo ) ¢ active_threads A pagerNo # kNilGNo A
= ( schedNo = kNilGNo =
thread_scheduler ( thread_gno ~* ( destNo ) ) € active_threads )

THEN
SetError ( itch , eInvalidScheduler )

WHEN  thread_space ( thread-gno —* ( spaceSpec ) ) # thread_space ( thread-gno ~1 ( destNo ) ) A
= ( threads_in_space ( thread_space ( thread_gno ~* ( spaceSpec ) ) ) < kMazThreadsPerSpace )

THEN

SetError ( itchb , eOutOfMemory )
ELSE

WeakModifyThread ( itch , destNo , spaceSpec , schedNo , pagerNo )
END

WHEN  spaceSpec # kNilGNo A destNo € ran ( thread_gno ) A
thread_gno ~' ( destNo ) € kIntThreads
THEN

Thread Modification - interrupt.

IF  pagerNo ¢ ran ( thread_gno ) THEN
SetError ( itch , eUnavailableThread )
ELSE
IntThreadControl ( itcb , destNo , pagerNo )
END
END
END ;

The redirector parameter is ignored, because it doesn’t do anything in the source code, has only a
partial description in the reference manual, and remains a hotly contested topic.

SpaceControl ( itch , spaceSpec , control , KernellnterfacePageArea , UtcbArea ) =
PRE itch € active_threads A thread_state ( itch ) = tsRunning A
spaceSpec € TCB N KernellnterfacePageArea € FPAGE N
UtcbArea € FPAGE A control € N
THEN

SELECT - ( dIsPrivilegedSpace ( thread_space ( itcb ))) THEN
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SetError ( itch , eNoPrivilege )
WHEN  spaceSpec & threads THEN
SetError (iteb , eInvalidSpace )
ELSE
The exact details of memory management are not really crucial. Either they are satisfactory
and the space is initialised, or it is not.
CHOICE
InitialiseAddressSpace2 ( itcb , thread_space ( spaceSpec ) )
OR
ANY error  WHERE error € { elnvalidUtcbArea , elnvalidKipArea } THEN
SetError ( itch , error )
END
END
END
END ;

ExchangeRegisters ( itch , tch , control , sp , ip , flags , pager , handle ) =
PRE itch € active_threads A thread_state ( itch ) = tsRunning A
tcb € TCB A control C EXREGS_FLAGS AN sp e NAp e NA
pager € TCB A flags € N A handle € N
THEN

SELECT  tcb & threads THEN
SetError (itch , eInvalidThread )
WHEN  tch € threads A thread_space ( tcb ) # thread_space ( itcb ) THEN
SetError (itch , eInvalidThread )
ELSE
CHOICE
IpcBaseExchangeRegisters ( tch | control | pager )
OR
ANY error  WHERE error € { eOutOfMemory , elnvalidUtcbLocation }
THEN
SetError ( itch , error )
END
END
END
END ;

Relating to the above, this specification does not deal with internal memory management issues.
Also, it does not perform the internal copy-mechanics of IPC, meaning no granting and no mapping
occurs. Therefore, unmapping is also a skip operation. This does not imply the model is flawed,
merely that the functionality needs to be added in a refinement of IPC. Unmap can then be refined
also.

Unmap ( itch , control ) =

81



PRE itchb € active_threads A thread_state ( itch ) = tsRunning A
control € N

THEN
skip

END ;

This system call donates the rest of this timeslice to another thread. If the thread is “any thread”,
then the scheduler picks the target thread. If it is a specific thread number, then control gets
transferred to that thread if it exists; if it does not, the invocation follows as if the target was “any
thread”. Alas, given a CPU-number-independent abstraction of the system, it is not known which
thread is presently executing, so at this level of refinement, nothing visible happens.

ThreadSwitch ( itch , dest ) =
PRE itch € active_threads A thread_state ( itch ) = tsRunning A
dest € TCB
THEN
SetError ( itch , eNoError )
END ;

Since purely non-deterministic scheduling is currently used, there is no need to store scheduling
aspects of threads such as priority, since they will have no effect on the model. As a consequence
of this, the Schedule operation must also be purely non-deterministic.

Schedule ( itch , destNo , timeControl , procControl , prio , preemptControl ) =
PRE itchb € active_threads A thread_state ( itch ) = tsRunning A
destNo € GLOBAL_TNO A
timeConitrol € N A procControl € N A prio € N A
preemptControl € N
THEN

IF  destNo & ran ( thread_gno ) THEN
SetError ( itch , eInvalidThread )
ELSIF  thread_scheduler ( thread_gno —' ( destNo ) ) # itcb THEN

Must be the thread’s scheduler.

SetError ( itcb , eNoPrivilege )
ELSE
CHOICE
skip
OR

One of the other parameters is invalid.
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SetError ( itch , eInvalidParameter )
END
END
END ;

Returns the value of the internal counter in us. It does not, however, return this value to the
kernel, but instead to the thread in some register not available in this specification.

SystemClock ( itcb ) =
PRE itchb € active_threads A thread_state ( itchb ) = tsRunning THEN
SetError ( itch , eNoError )
END ;

Processor and memory control are only included for completeness, they work at the hardware level
and don’t do anything to the kernel itself.

ProcessorControl ( itcb , procNo , internalFreq , extFreq , voltage ) =
PRE itchb € active_threads A thread_state ( itch ) = tsRunning A
procNo € N A internalFreq € N A extFreq € N A woltage € N
THEN
SELECT - ( dIsPrivilegedSpace ( thread_space ( itcb ))) THEN
SetError ( itch , eNoPrivilege )
ELSE
SetError ( itch , eNoError )
END
END ;

MemoryControl ( itch , attr0 , attrl , attr2 | attr3 ) =
PRE itchb € active_threads A thread_state ( itch ) = tsRunning A
attr0 € N A attrl € N A attr2 € N A attr8 € N
THEN
SELECT - ( dIsPrivilegedSpace ( thread_space ( itcb ))) THEN
SetError ( itch , eNoPrivilege )
ELSE
SetError ( itch , eNoError )
END
END

END
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A.2 WeakSyscall

MACHINE WeakSyscall

SEES

Kernellnformation , ThreadldCtx , Bool. TYPE | ThreadStateCtz , AddressSpaceCtx |
TimeoutCtx , ThreadCtz , ErrorCtx

INCLUDES IpcBase
PROMOTES

SetError |

Timeout Wait
TimeoutPoll ,
ResolvelPC' |

Initialise AddressSpace2
IpcBaseFExchangeRegisters

OPERATIONS

WeaklIpc ( itch , to_gno , fromSpecifier , send_timeout , recv_timeout ) =
PRE canIPC ( itch ) A
to_gno € GLOBAL_TNO A
( to_gno # kNilGNo =
to_gno € ran ( thread_gno ) A
thread_gno ~' ( to_gno ) € threads ) A
fromSpecifier € GLOBAL-TNO A
fromSpecifier € thread_gno [ threads | U { kAnyGNo , kNilGNo } A
send_timeout € TIMEOUT N
recv_timeout € TIMEOUT
THEN

SELECT to_gno = kNilGNo A fromSpecifier = kNilGNo THEN
SetError ( itch , eSendNonFExistingPartner )
WHEN  to_gno = kNilGNo A fromSpecifier # kNilGNo THEN

IF  fromSpecifier = kAnyGNo THEN
IF  thread_incoming ( itchb ) # {} THEN
JustReceive ( itch , fromSpecifier )
ELSIF - (isNoTimeout ( recv_timeout ) ) THEN
JustWait ( itch , recv_timeout , fromSpecifier )
ELSE
SetError ( itch , eRecvTimeout )
END
ELSE
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IF  fromSpecifier € thread_incoming_gnos ( itcb ) THEN
JustReceive ( itch , fromSpecifier )
ELSIF - ( isNoTimeout ( recv_timeout ) ) THEN
JustWait ( itch , recv_timeout , fromSpecifier )
ELSE
SetError ( itch , eRecvTimeout )
END
END
WHEN  to_gno # kNilGNo THEN
ANY to WHERE to € threads A thread_gno =1 ( to_gno ) = to THEN

IF  to € dom ( thread_ipc_waiting_for ) THEN
IF  thread_ipc_waiting_for ( to ) € { thread_gno ( itcb ) , kAnyGNo } THEN

IF  fromSpecifier # kNilGNo =
= (isNoTimeout ( recv_timeout ) ) THEN
WakeDest ThenWait ( itch , to | recv_timeout ,
fromSpecifier )

ELSE
SetError ( itch , eSendTimeout )

END

ELSE

IF  fromSpecifier # kNilGNo =
= (isNoTimeout ( recv_timeout ) ) THEN
SetUpReceivePhaseAndPoll ( itcb , to , send_timeout ,
recu_timeout , fromSpecifier )
ELSE
SetError ( itch , eSendTimeout )
END
END
ELSE
IF  fromSpecifier # kNilGNo =
= (isNoTimeout ( recv_timeout ) ) THEN
SetUpReceive PhaseAndPoll ( itcb , to , send_timeout ,
recu_timeout , fromSpecifier )
ELSE
SetError ( itch , eSendTimeout )
END
END
END
END
END ;
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Not a syscall, but constitutes the deletion part of ThreadControl.

WeakDeleteThread ( itchb , dest ) =

PRE itchb € active_threads N dIsPrivilegedSpace ( thread_space ( itcb ) ) A
dest € ran ( thread_gno ) A
thread_space ( thread_gno ~* ( dest ) ) # kSigma0OSpace A
thread_space ( thread_gno ~' ( dest ) ) # kRootServerSpace N
thread_space ( thread_gno ~' ( dest ) ) # kKernelSpace THEN
DeleteThread? ( thread-gno —1 ( dest ))

END ;

Not a syscall, but constitutes the modification part of ThreadControl

WeakModifyThread ( itch , destNo , spaceSpecifier , schedNo , pagerNo ) =
PRE itchb € active_threads N dIsPrivilegedSpace ( thread_space ( itcb ) ) A
destNo € GLOBAL_-TNO A destNo € ran ( thread_gno ) A
spaceSpecifier € GLOBAL-TNO A
schedNo € GLOBAL_-TNO A
pagerNo € GLOBAL_TNO A
spaceSpecifier # kAnyGNo A
schedNo # kAnyGNo A
pagerNo # kAnyGNo A

If we are changing one of the values, it must be to a valid thread.

( spaceSpecifier # kNilGNo = spaceSpecifier € ran ( thread_gno ) ) A
( schedNo # kNilGNo = schedNo € ran ( thread_gno ) ) A
( pagerNo # kNilGNo = pagerNo € ran ( thread_gno ) ) A

Can’t activate with a non-running scheduler

( thread_gno ~! ( destNo ) & active_threads A pagerNo # kNilGNo =

( schedNo # kNilGNo = thread_gno ~' ( schedNo ) € active_threads ) A
( schedNo = kNilGNo =

thread_scheduler ( thread_gno ~' ( destNo ) ) € active_threads ) ) A

Migration, if necessary, must succeed.

( spaceSpecifier # kNilGNo A
thread_space ( thread_gno ~* ( spaceSpecifier ) ) # thread_space ( thread_gno ~' ( destNo ) ) =

threads_in_space ( thread_space ( thread_gno ~! ( spaceSpecifier ) ) ) < kMaxThreadsPerSpace )
THEN

Due to being unable to call operations in underlying machines in parallel, even when they
don’t access the same variables, this must be done.
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SELECT  spaceSpecifier = kNilGNo N schedNo = kNilGNo A pagerNo = kNilGNo
THEN

skip
WHEN  pagerNo # kNilGNo THEN

Activation.

IF  spaceSpecifier = kNilGNo A schedNo = kNilGNo THEN
Activate Thread2 ( thread-gno —1 ( destNo ) ,
thread_space ( thread-gno ~' ( destNo ) ) ,
thread_gno —* ( pagerNo ) ,
thread_scheduler ( thread_gno ~* ( destNo ) ) )
ELSIF  spaceSpecifier = kNilGNo N schedNo # kNilGNo THEN
Activate Thread2 ( thread_gno —1 ( destNo ) ,
thread_space ( thread_gno —1 ( destNo ) ) ,
thread_gno ~* ( pagerNo ) ,
thread_gno ~* ( schedNo ) )
ELSIF  spaceSpecifier # kNilGNo N schedNo = kNilGNo THEN
Activate Thread2 ( thread_gno —' ( destNo ) ,
thread_space ( thread_gno —1 ( spaceSpecifier ) ) ,

thread_gno ~* ( pagerNo ) ,
thread_scheduler ( thread_gno ~! ( destNo ) ) )
ELSE

Activate Thread2 ( thread_gno —' ( destNo ) ,
thread_space ( thread-gno —* ( spaceSpecifier ) ) ,

thread_gno ~* ( pagerNo ) ,
thread_gno —* ( schedNo ) )
END
ELSE

Modification, space migration.

IF  spaceSpecifier = ENilGNo THEN

SetScheduler? ( itch , thread_gno —' ( destNo ) , thread_gno ~' ( schedNo ))
ELSIF  schedNo = kNilGNo THEN

Migrate2 ( itch , thread_gno ! ( destNo ) ,

thread_space ( thread-gno —* ( spaceSpecifier ) ) )
ELSE

MigrateAndSetScheduler? ( itcb , thread_gno ~! ( destNo ) ,

thread_space ( thread-gno —* ( spaceSpecifier ) ) ,

thread_gno —* ( schedNo ) )
END

END

END ;
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ThreadControl for interrupt threads.

IntThreadControl ( itcb , destNo , handlerNo ) =
PRE itchb € active_threads N dIsPrivilegedSpace ( thread_space ( itcb ) ) A
destNo € GLOBAL_TNO A handlerNo € GLOBAL_-TNO A
destNo € ran ( thread_gno ) A
handlerNo € ran ( thread_gno ) A
thread_gno ~* ( destNo ) € kIntThreads
THEN

Creation or deletion doesn’t really make sense here. While the L4 source code defines creation
the reference manual does not mention this. Furthermore, lazy creation of UTCBs for interrupt
threads is probably yet another performance optimisation.

ANY dest WHERE dest € threads A thread_gno ( dest ) = destNo THEN
IF  destNo = handlerNo THEN
DeactivateInterrupt?2 ( itch , dest )
ELSE
ANY handler  WHERE  handler € threads A
thread_gno ( dest ) = handlerNo THEN
ActivateInterrupt2 ( itcb , dest , handler )
END
END
END
END ;

Not a syscall, but constitutes the creation part of ThreadControl

WeakCreateThread ( itch , destNo , spaceSpecifier , schedNo , pagerNo ) =
PRE itchb € active_threads N dIsPrivilegedSpace ( thread_space ( itcb ) ) A
destNo € GLOBAL_-TNO A destNo ¢ ran ( thread_-gno ) A
spaceSpecifier € GLOBAL-TNO A
schedNo € GLOBAL_TNO A
spaceSpecifier # kAnyGNo A
spaceSpecifier # kNilGNo N
schedNo # kAnyGNo A
schedNo # kNilGNo N
pagerNo # kAnyGNo A
pagerNo € ran ( thread_gno ) U { kNilGNo } A
schedNo € ran ( thread_gno ) A

Resources must be available for thread and possibly space creation.

threads # TCB A
( spaceSpecifier = destNo = spaces # ADDRESS_SPACE ) A
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To create a new address space with a thread in it, set destNo = spaceSpecifier. Otherwise
spaceSpecifier must be valid.

( spaceSpecifier # destNo = spaceSpecifier € ran ( thread_gno ) ) A

Creating an active thread requires an initialised space and a running scheduler.
( pagerNo € ran ( thread_gno ) =

thread_space ( thread_gno —1 ( spaceSpecifier ) ) € initialised_spaces N\
thread_gno ~' ( schedNo ) € active_threads ) A

Can’t exceed kMaxThreadsPerSpace
( spaceSpecifier € ran ( thread_gno ) =

threads_in_space ( thread_space ( thread_gno ~! ( spaceSpecifier ) ) ) < kMaxThreadsPerSpace )
THEN

ANY tcb WHERE tcb € TCB — threads THEN

IF  pagerNo = kNilGNo THEN

Create inactive.
IF  spaceSpecifier = destNo THEN

New space requested. Pick one.
ANY space  WHERE  space € ADDRESS_SPACE — spaces THEN

CreateThread2 ( itch , tcb , destNo , space
thread_gno —* ( schedNo ) )
END
ELSE

Use the space specified by spaceSpecifier.
CreateThread?2 ( itch , tcb , destNo ,
thread_space ( thread_-gno —* ( spaceSpecifier ) ) ,
thread-gno —* ( schedNo ) )

END

ELSE
Create active.
IF  spaceSpecifier = destNo THEN
New space requested. Pick one.
ANY space  WHERE  space € ADDRESS_SPACE — spaces THEN

CreateActiveThread?2 ( tcb , destNo , space ,
thread_gno ~' ( schedNo ) , thread-gno ~* ( pagerNo ) )
END
ELSE

Use the space specified by spaceSpecifier.
CreateActiveThread?2 ( tcb , destNo ,
thread_space ( thread_gno —* ( spaceSpecifier ) ) ,
thread_gno —* ( schedNo ) , thread_gno ~' ( pagerNo ) )
END
END
END
END

END
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A.3 IpcBase

MACHINE [pcBase

Operations enabling IPC to occur.

SEES

Kernellnformation , ThreadldCtx , Bool. TYPE | ThreadStateCtz , AddressSpaceCtx |
TimeoutCtz , ThreadCtx , ErrorCtx

INCLUDES IpcCore
VARIABLES

Thread number a thread is waiting for.

thread_ipc_waiting_for ,
thread_ipc_waiting-timeout ,
thread_ipc_polling_on ,

thread_ipc_polling_timeout |

When the thread gets awakened from polling by the target, and there is a receive phase, these will
have been set to what the values of thread_ipc_waiting_timeout and thread-ipc_waiting_for will be
set to upon entering a waiting state on IPC send phase success.

thread_recv_waiting_for |

thread_recv_waiting_timeout ,

the queue of threads polling on this one
thread_incoming ,

the queue of thread numbers polling on this one
thread_incoming_gnos ,

represents the Error TCR

thread_error

INVARIANT

Threads waiting for IPCs must be waiting for an IPC from someone. Not waiting, ie. waiting for
NilThread precludes from membership.

thread_ipc_waiting_for € active_threads - GLOBAL_-TNO A

kNilGNo ¢ ran ( thread_ipc_waiting_for ) A

thread_ipc_waiting_timeout € active_threads — TIMEOUT N

eZeroTimeout & ran ( thread_ipc_waiting_timeout ) A

dom ( thread_ipc_waiting_timeout ) = dom ( thread_ipc_waiting_for ) A

dom ( thread_ipc_waiting_timeout ) = thread_state ~' [ { tsWaitingTimeout
tsWaitingForever } | A
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Threads polling must poll on a thread.

thread_ipc_polling_on € active_threads - threads N
thread_ipc_polling_timeout € active_threads - TIMEOUT N

dom ( thread_ipc_polling_timeout ) = thread_state 1 [ { tsPolling } ] A
eZeroTimeout & ran ( thread_ipc_polling_timeout ) A

dom ( thread_ipc_polling_on ) C dom ( thread_ipc_polling_timeout ) A

Post-polling receive phase status.

thread_recv_waiting_for € active_threads - GLOBAL_-TNO A
thread_recv_waiting_timeout € active_threads - TIMEOUT A

dom ( thread_recv_waiting_for ) C dom ( thread_ipc_polling_timeout ) A
dom ( thread_recv_waiting_for ) = dom ( thread_recv_waiting_timeout ) A
kENilGNo ¢ ran ( thread_recv_waiting_for ) A

eZeroTimeout ¢ ran ( thread_recv_waiting_timeout ) A

Not all polling threads will advance to a receive phase.

dom ( thread_recv_waiting_timeout ) C thread_state 1 [ { tsPolling } ] A

Future and actual waiting must not interfere with each other.

dom ( thread_recv_waiting_timeout ) N dom ( thread-ipc_waiting-timeout ) = {} A

When a thread is deleted, it must be removed from the range of these as well as the domains.

thread_incoming € active_threads — P ( threads ) A

V tt . (tt € active_threads = thread_incoming ( tt ) =
thread_ipc_polling-on > [{ &t }]) A

thread_incoming_gnos € active_threads — P ( GLOBAL_TNO ) A
V tt . ((tt € active_threads = thread_incoming_gnos ( tt ) =
thread_gno [ thread_incoming ( tt )] ) A

The error status of an inactive thread has no implications.

thread_error € active_threads — FERROR
ASSERTIONS

thread_state [ dom ( thread_ipc_waiting_timeout ) | C { tsWaitingForever , tsWaiting Timeout } A
thread_state | dom ( thread_ipc_waiting_for )] C { tsWaitingForever , tsWaiting Timeout }

INITIALISATION

thread-ipc_waiting_for = {} ||

thread_ipc_waiting_timeout := {} ||

thread_ipc_polling_on := {} ||

thread_ipc_polling_timeout := {} ||

thread_recv_waiting_for := {} ||

thread_recv_waiting_timeout := {} ||

thread_incoming :€ { kSigma0 , kRootServer } U kintThreads — { {} } ||
thread_incoming_gnos :€ { kSigma0 , kRootServer } U kIntThreads — { {} } ||
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thread_error := { kSigma0 — eNoError , kRootServer — eNoError } U kIntThreads x { eNoError }

OPERATIONS

Activate thread. Requires a pager. Adds IPC functionality to ActivateThread in Thread.mch.
Preconditions are the same.

ActivateThread2 ( tcb , space , pager , scheduler ) =
PRE tcb € threads A tcb & active_threads N
teb # pager A
thread_space ( tcb ) € initialised_spaces N
pager € active_threads N
scheduler € active_threads N
space € initialised_spaces N
( space # thread_space ( tcb ) =
threads_in_space ( space ) < kMaxzThreadsPerSpace )
THEN
ActivateThread ( tcb , space , pager , scheduler ) ||
thread_ipc_waiting_timeout ( tcb ) := elnfinite Timeout ||
thread_ipc_waiting_for ( tcb ) := thread_gno ( pager ) ||
thread_error ( tcb ) := eNoError ||

There is a risk some threads might already be polling on this one.

thread_incoming ( tcb ) := thread_ipc_polling_on =1 [ { tcb } | ||
thread_incoming-gnos ( tcb ) := thread_gno [ thread-ipc_polling-on ~' [ { tcb } 1]
END ;

Create active thread. Adds IPC functionality. Preconditions are the same.

CreateActiveThread2 ( tcb , global_tno , space , scheduler , pager ) =

PRE tcb € TCB — threads N

global_tno € GLOBAL_TNO A

global_tno ¢ ran ( thread_gno ) A

global_tno # kNilGNo A

global_tno # kAnyGNo A

scheduler € active_threads N

pager € threads A

tcb # pager N

space € initialised_spaces N

space # kKernelSpace N

( space € spaces = threads_in_space ( space ) < kMaxThreadsPerSpace )
THEN

CreateActiveThread ( tch , global_tno , space , scheduler , pager ) ||

thread_ipc_waiting_timeout ( tcb ) := elnfinite Timeout ||

thread_ipc_waiting_for ( tcb ) := thread_gno ( pager ) ||

thread_error ( tcb ) := eNoError ||
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There is a risk some threads might already be polling on this one.

thread_incoming ( tcb ) := thread_ipc_polling-on ' [ { tcb } ] ||
thread_incoming-gnos ( tcb ) := thread_gno [ thread-ipc_polling-on ~' [ { tcb } 1]
END

Extends DeleteThread with cleaning up all IPC status information.

DeleteThread2 ( tcb ) =
PRE tcb € threads A thread_space ( tcb ) # kSigma0OSpace N
thread_space ( tcb ) # kRootServerSpace N
thread_space ( tcb ) # kKernelSpace
THEN
DeleteThread ( tcb ) ||
thread_ipc_waiting_for := { tcb } < thread_ipc_waiting_for ||

thread_ipc_waiting-timeout := { tcb } < thread_ipc_waiting-timeout ||
Remove all mappings for both this thread and all threads polling on this one, but not the timeout.

thread_ipc_polling_on := { tcb } < thread_ipc_polling_on & { tcb } ||
thread_ipc_polling-timeout := { tcb } < thread_ipc_polling_timeout ||
thread_recv_waiting-for := { tcb } < thread_recv_waiting_for ||
thread_recv_waiting_timeout := { tcb } < thread_recv_waiting_timeout ||
thread_incoming :=
{ aa, bb | aa € dom ( thread_incoming ) — { tcb } A

bbeP ( TCB) A

bb = thread_incoming (aa ) — { tcb } } ||
thread_incoming_gnos =
{aa, bb | aa € dom ( thread_incoming_gnos ) — { tcb } A

bb € P ( GLOBAL.TNO ) A

bb = thread_incoming_gnos ( aa ) — { thread_gno ( tcb ) } } ||
thread_error == { tcb } < thread_error

END ;

If no one matching fromSpecifier is polling on the thread, let it assume a waiting state. Timing
out occurs via a separate operation.

JustWait ( tcb , timeout , fromSpecifier ) =
PRE canIPC ( tcb ) A

Zero timeout is pointless.

timeout € TIMEOUT A — ( isNoTimeout ( timeout ) ) A
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Waiting for no one is also pointless.

fromSpecifier € GLOBAL_-TNO A
fromSpecifier # kNilGNo N

If not waiting for just anyone, must be waiting for an existing thread.

fromSpecifier € thread_gno [ threads | U { kAnyGNo } A

No one matching fromSpecifier must be polling.

( fromSpecifier = kAnyGNo = thread_incoming ( tcb ) = {} ) A
( fromSpecifier # kAnyGNo =
fromSpecifier & thread_incoming_gnos ( tcb ) )
THEN
thread_ipc_waiting-for ( tcb ) := fromSpecifier ||
thread_ipc_waiting-timeout ( tcb ) := timeout ||
IF  dsInfinite ( timeout ) THEN
SetState ( tcb , tsWaitingForever )
ELSE
SetState ( tcb , tsWaiting Timeout )
END
END ;

Target is not waiting for sender, and so must poll. If a receive phase is included, set it up. Timing
out occurs via a different operation.

SetUpReceivePhaseAndPoll ( tchb_from , teb_to , poll_timeout , recv_timeout ,
fromSpecifier ) =
PRE  canIPC ( tcb_from ) A tcb_to € threads A

Target must not be waiting for source.

( teb-to € dom ( thread_ipc_waiting_for ) =
thread_ipc_waiting_for ( tcb_to ) # thread_gno ( tcb_from ) A
thread_ipc_waiting_for ( tcb_to ) # kAnyGNo ) A

Waiting for no one is permitted (no recv phase).

fromSpecifier € GLOBAL-TNO A

Zero timeouts are pointless in this case.

poll_timeout € TIMEOUT A — ( isNoTimeout ( poll_timeout ) ) A

Unless there is no receive phase, whereby we don’t care.
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recv_timeout € TIMEOUT A
( fromSpecifier # kNilGNo = — ( isNoTimeout ( recv_timeout ) ) ) A

If there is a receive phase, and not waiting for just anyone, must be waiting for an existing thread.

fromSpecifier € thread_gno [ threads | U { kAnyGNo , kNilGNo }
THEN

Make the thread poll on the destination.

thread_ipc_polling-on ( tcb_from ) := tcb_to ||

thread_ipc_polling_timeout ( tcb_from ) := poll_timeout ||

thread_incoming ( tcb_to ) := thread_incoming ( tcb_to ) U { tcb_from } ||

thread_incoming-gnos ( tcb_to ) := thread_incoming-gnos ( tcb_to ) U { thread_gno ( tcb_from ) } ||
SetState ( tcb_from , tsPolling ) ||

If there is a receive phase, initialise it.

IF  fromSpecifier # kNilGNo THEN
thread_recv_waiting_for ( tcb_from ) := fromSpecifier ||
thread_recv_waiting_timeout ( tcb_from ) := recv_timeout

END

END ;

Someone is polling on this thread, and we wish to receive an ipc from one such poller. Timeouts
and polling are not in effect as this is instantaneous message pickup.

JustReceive ( itch , fromSpecifier ) =
PRE  canIPC ( itch ) A

A receive phase is mandatory; must have someone to receive from.

fromSpecifier € GLOBAL_-TNO A
fromSpecifier # kNilGNo A

That someone must be polling.

( fromSpecifier # kAnyGNo =

fromSpecifier € thread_incoming-gnos ( itcb ) ) A

( fromSpecifier = kAnyGNo = thread_incoming ( itcb ) # {} )
THEN

ANY  tcb_from WHERE tcb_from € thread_incoming ( itch ) A
( fromSpecifier # kAnyGNo =
thread_gno ( tcb_from ) € thread_incoming_gnos ( itcb ) )

THEN
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thread_ipc_polling_on := { tcb_from } < thread_ipc_polling_on ||

thread_ipc_polling_timeout =

{ teb_from } < thread_ipc_polling_timeout ||

thread_incoming ( itcb ) := thread_incoming ( itchb ) — { tcb_from } |

thread_incoming_gnos ( itch ) := thread_incoming_gnos ( itchb ) — { thread_gno ( tcb_from ) } ||
thread_recv_waiting-timeout :=

{ teb_from } < thread_-recv_waiting_timeout ||

thread_recv_waiting_for :=

{ teb_from } < thread_recv_waiting_for ||
CHOICE

IPC Succeeds

PerformIPC ( tcb_from , itchb ) ||
thread_error := thread_error < { itcb — eNoError , tcb_from — eNoError } ||

If there is a receive phase pending, initiate it.

IF  tcb_from € dom ( thread_recv_waiting_for ) THEN
thread_ipc_waiting_for ( tcb_from ) :=
thread_recv_waiting_for ( tcb_from ) ||
thread_ipc_waiting_timeout ( tcb_from ) :=
thread_recv_waiting_timeout ( tcb_from ) ||
IF  isInfinite ( thread_recv_waiting_timeout ( tcb_from ) ) THEN

SetState ( tcb_from , tsWaitingForever )
ELSE

SetState ( tcb_from , tsWaiting Timeout )
END

ELSE
UnWait ( tcb_from )

END

OR

IPC Fails. Both threads resume running with the IPC error.

UnWait ( tcb_from ) ||
ANY error WHERE  error € dipcFailures THEN
thread_error := thread_error < { itch — error , tcb_from — error }
END
END
END
END ;

Destination is waiting for source (or anyone). Wake up Destination and wait (if receive phase).
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WakeDestThenWait ( tch_from , tcb_to , recv_timeout , fromSpecifier ) =
PRE  canIPC ( tcb_from ) A tcb_to € threads A
isWaiting ( thread_state ( tcb_to ) ) A

Target must be waiting for source.

teb_to € dom ( thread_ipc_waiting_for ) A
thread_ipc_waiting_for ( tcb_to ) € { thread_gno ( tcb_from ) , kAnyGNo } A

Waiting for no one is permitted (no recv phase).

fromSpecifier € GLOBAL_-TNO A

Poll time out is irrelevant this case.
Unless there is no receive phase, a non-zero timeout must be available.

recv_timeout € TIMEOUT A
( fromSpecifier # kNilGNo = — ( isNoTimeout ( recv_timeout ) ) ) A

If receive phase is included, and not waiting for just anyone, must be waiting for an existing thread.

fromSpecifier € thread_gno [ threads | U { kAnyGNo , kNilGNo }
THEN
IPC might still fail.
CHOICE
PerformIPC ( tcb_from , teb_to ) ||
thread_error := thread_error < { tcb_to — eNoError , tcb_from — eNoError } ||
IF  fromSpecifier = kNilGNo THEN

No receive phase. Wake up the target
thread_ipc_waiting_for := { tcb_to } < thread_ipc_waiting_for ||

thread_ipc_waiting_timeout :=
{ teb_to } < thread_ipc_waiting_timeout ||
UnWait ( tcb-to )

ELSE

Receive phase. Wake up target and wait.

thread_ipc_waiting_for =

{ tcb_to } < thread_ipc_waiting_for U { tcb_from — fromSpecifier } ||

IF  isInfinite ( recv_timeout ) THEN
thread_ipc_waiting-timeout :=
{ teb_to } < thread_ipc_waiting_timeout U { tcb_from +— elnfiniteTimeout } ||
WakeUpAndWait ( tcb_from , tcb_to , tsWaitingForever )

ELSE
thread_ipc_waiting-timeout :=
{ teb_to } < thread_ipc_waiting_timeout U { tcb_from +— elnfinite Timeout } ||
WakeUpAndWait ( tcb_from , tcb_to , tsWaitingTimeout )

END

END
OR
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Ipc Fails. No receive phase follows.

UnWait ( tcb-to ) ||
thread_ipc_waiting_for := { tcb_to } < thread_ipc_waiting_for ||
thread_ipc_waiting_timeout :=
{ teb_to } < thread_ipc_waiting_timeout ||
ANY error WHERE error € dipcFailures THEN
thread_error := thread_error < { tcb_to — error , tcb_from — error }
END
END
END ;

Waiting thread is waiting for the polling thread. This situation is resolved by the scheduler, hence
the seperate operation.

ResolveIPC ( tcb_from , tcb_to) =

PRE tcb_from € active_threads A tcb_to € active_threads N
isPolling ( thread_state ( tcb_from ) ) A
isWaiting ( thread_state ( tcb_to ) ) A
thread_ipc_polling-on ( tcb_from ) = teb_to A
( thread_ipc_waiting_for ( tcb_to ) # kAnyGNo =
thread_ipc_waiting_for ( tcb_to ) = thread_gno ( tcb_from ))

THEN
DualWakeUp ( tcb_from , tcb_to ) ||
thread_ipc_waiting_for := { tcb_to } < thread_ipc_waiting_for ||
thread_ipc_waiting_timeout = { tcb_to } < thread_ipc_waiting-timeout ||
thread_ipc_polling-on := { tcb_from } < thread_ipc_polling-on ||
thread_ipc_polling_timeout :=
{ teb_from } < thread_ipc_polling_timeout ||
thread_incoming ( tcb-to ) := thread_incoming ( tcb_to ) — { tcb_from } ||
thread_incoming-gnos ( tcb_to ) := thread_incoming_gnos ( tcb-to ) — { thread_gno ( tcb_from ) } ||

CHOICE

Ipc Succeeds.

PerformIPC ( tcb_from , teb_to ) ||
thread_error := thread_error < { tcb_to — eNoError , tcb_from — eNoError }
OR

Ipc Fails

ANY error WHERE error € dipcFailures THEN
thread_error := thread_error < { tcb_to — error , tcb_from — error }
END
END
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END ;

Invoked by system. Time out a polling thread.

TimeoutPoll =

BEGIN
IF  thread_ipc_polling_timeout > { eFiniteTimeout } = {} THEN
skip
ELSE
ANY tcb

WHERE  {cb € dom ( thread_ipc_polling-timeout > { eFiniteTimeout } ) THEN
UnWait ( tcb ) |
thread_ipc_polling_on := { tcb } < thread_ipc_polling_on ||
thread_ipc_polling_timeout :=
{ teb } < thread_ipc_polling_timeout ||
thread_incoming ( thread_ipc_polling_on ( tcb

)
ch)) — { thread_gno ( tcb ) } ||

)) =

thread_incoming ( thread_ipc_polling_on ( tcb ) ) — { teh } I
thread_incoming-gnos ( thread_ipc_polling_on ( t
thread_incoming-gnos ( thread_ipc_polling_on ( t
thread_recv_waiting_timeout :=
{ teb } < thread_recv_waiting_timeout ||
thread_recv_waiting_for :=
{ teb } < thread_recv_waiting_for ||
thread_error ( tcb ) := eSendTimeout

END
END

END ;

Invoked by system. Time out a waiting thread.

TimeoutWait =

BEGIN
IF  thread_ipc_waiting-timeout > { eFiniteTimeout } = {} THEN
skip
ELSE
ANY tcb

WHERE tcb € dom ( thread_ipc_waiting_timeout > { eFiniteTimeout } ) THEN
UnWait ( tcb) |
thread_ipc_waiting-for := { tcb } < thread_ipc_waiting_for ||
thread_ipc_waiting_timeout :=
{ teb } < thread_ipc_waiting_timeout ||

thread_error ( tcb ) := eRecvTimeout
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END
END
END ;

SetError ( tcb, error ) =
PRE tcb € active_threads N error € ERROR THEN
thread_error ( tcb ) := error

END ;

The IPC extension to the ExchangeRegisters found in Thread

IpcBaseExchangeRegisters ( tcb , control , pager ) =

PRE tcb € threads A control C EXREGS_FLAGS A pager € TCB A
teb & kIntThreads

THEN

The power to abort or cancel IPCs. Note a thread can’t be sending and receiving at the same time.

IF  ex.S € control A tcb € dom ( thread_ipc_polling-on ) THEN

Cancel sending

ThreadExchangeRegisters ( tcb , control , pager , TRUE ) ||
thread_ipc_polling_on := { tcb } < thread_ipc_polling_on ||
thread_ipc_polling_timeout =

{ teb } < thread_ipc_polling_timeout ||
thread_incoming ( thread_ipc_polling_on ( tcb
thread_incoming ( thread_ipc_polling_on ( tcb
cb

) =

) — { teb } I

t

teh ) ) — { thread_gno ( tcb ) } ||

)
)
thread_incoming_gnos ( thread_ipc_polling_on (
thread_incoming_gnos ( thread_ipc_polling_on (
thread_recv_waiting_timeout :=

{ teb } < thread_recv_waiting_timeout ||
thread_recv_waiting_for :=

{ teb } < thread_recv_waiting_for ||

ANY er WHERE err € { eSendCancelled , eAborted } THEN
thread_error ( tcb ) := err
END

ELSIF  ex_R € control A tcb € dom ( thread_ipc_waiting_for ) THEN

Cancel receiving

ThreadExzchangeRegisters ( tcb , control | pager , TRUE ) ||
thread_ipc_waiting_for := { tcb } < thread_ipc_waiting_for ||
thread_ipc_waiting_timeout :=
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{ teb } < thread_ipc_waiting_timeout ||

ANY err WHERE err € { eRecvCancelled , eAborted } THEN
thread_error ( tcb ) := err

END

ELSE
ThreadExchangeRegisters ( tcb , control | pager , FALSE ) ||
thread_error ( tcb ) := eNoError

END

END ;

Since invoking two operations from the same machine in B not permitted, and we want the error
state to be cleared on success, these operations build upon those with similar names in the included
machines, but also clear the error in the thread that invoked them.

InitialiseAddressSpace2 ( itch , space ) =
PRE tcb € active_threads N space € spaces THEN
InitialiseAddressSpace ( space ) ||
thread_error ( itch ) := eNoError
END ;

CreateThread?2 ( itch , tcb , global_tno , space , scheduler ) =
PRE  itch € active_threads N tcb € TCB — threads N
global_tno € GLOBAL_TNO A
global_tno ¢ ran ( thread_gno ) A
global_tno # kNilGNo A
global_tno # kAnyGNo A
scheduler € TCB N
space € ADDRESS_SPACE N
space # kKernelSpace N
( space € spaces = threads_in_space ( space ) < kMaxThreadsPerSpace )
THEN
CreateThread ( tcb , global_tno , space , scheduler ) ||
thread_error ( itcb ) := eNoError
END ;

SetScheduler2 ( itch , tcb , scheduler ) =
PRE itchb € active_threads N tcb € threads N scheduler € threads THEN
SetScheduler ( tcb , scheduler ) ||

thread_error ( itch ) := eNoError
END ;
Migrate2 ( itcb , tcb , space ) =
PRE tch € active_threads N tcb € threads A space € spaces N

( space # thread_space ( tcb ) =
threads_in_space ( space ) < kMaxzThreadsPerSpace )
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THEN
Migrate ( tcb , space ) ||
thread_error ( itcb ) := eNoError
END ;

MigrateAndSetScheduler2 ( itcbh , tcb , space , scheduler ) =
PRE itchb € active_threads N tcb € threads N
space € spaces N scheduler € threads N
( space # thread_space ( tcb ) =
threads_in_space ( space ) < kMaxzThreadsPerSpace )
THEN
MigrateAndSetScheduler ( tcb , space , scheduler ) ||
thread_error ( itcb ) := eNoError
END ;

ActivateInterrupt2 ( itcb , tcb , handler ) =
PRE  itch € active_threads N tcb € kIntThreads N
handler € TCB A handler # tcb THEN
ActivateInterrupt ( tcb , handler ) ||
thread_error ( itcb ) := eNoFError
END ;

~

DeactivateInterrupt2 ( itch , tcb ) =
PRE itch € active_threads N tchb € kIntThreads THEN
DeactivateInterrupt ( tcb ) ||
thread_error ( itcb ) := eNoFError
END

END
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A.4 IpcCore

MACHINE IpcCore

Contains only the actual IPC transfer operation. This is very crude, but at the moment IPC
doesn’t really have anything to transfer yet (not until MRs are modelled).

SEES

Kernellnformation , ThreadldCtx , Bool_ TYPE |, ThreadStateCtx , AddressSpaceCtz |
TimeoutCtz , ThreadCtx

EXTENDS Thread

OPERATIONS

PerformIPC ( from ,to) =
PRE from € active_threads N to € active_threads N
canSend ( from ) A canReceive ( to ) THEN
skip
END

DEFINITIONS

Participation in IPC is limited to active, non-halted threads which are not already participating
in IPC. Note that “halted” means the exact opposite for interrupt threads.

canIPC (t) =
t € active_threads N
(t € kIntThreads = t € halted_threads ) A
(t & kIntThreads = thread_state ( t ) = tsRunning A t € halted_threads )

END
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A.5 Thread

MACHINE Thread
SEES

Kernellnformation , ThreadldCtx , Bool_ TYPE |, ThreadStateCtx , AddressSpaceCtz |
TimeoutCtz , ThreadCtx

INCLUDES
AddressSpace
PROMOTES
Initialise AddressSpace
VARIABLES

threads
thread_gno ,

active_threads

halted_threads
thread_space ,
thread_scheduler |
thread_pager ,
thread_state ,
threads_in_space

INVARIANT

threads € TCB N

thread_gno € threads — GLOBAL_TNO A
kAnyGNo & ran ( thread_gno ) A

kNilGNo & ran ( thread_gno ) A
halted_threads C threads A

active_threads C threads N

Sigma0 and the Root Server are permanently active threads.

kSigmal € active_threads A
kRootServer € active_threads N

So are the interrupt threads.

kIntThreads C active_threads A

No space may exist without a thread in it.

thread_space € threads — spaces N
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A thread must not be active if its address space is uninitialised. However, the space must be initialised
before the thread is activated.

thread_space | active_threads | C initialised_spaces N

Sigma0 and RootServer get their own spaces, but can create more threads in their respective spaces.

thread_space ( kSigma0 ) = kSigma0Space N
thread_space ( kRootServer ) = kRootServerSpace A

All (and only) interrupt threads reside in the kernel space.

thread_space | kIntThreads | = { kKernelSpace } A
thread_space ! [ { kKernelSpace } | = kIntThreads A

The only constraint placed on schedulers is that a thread must have a scheduler defined. Whether
the scheduler is valid or not is only relevant at thread activation.

Interrupt threads do not have schedulers.

thread_scheduler € threads — kIntThreads — TCB N

The scheduler of sigma0 is always the root server, which is always its own scheduler.

thread_scheduler ( kSigma0 ) = kRootServer A
thread_scheduler ( kRootServer ) = kRootServer A

To become active, a thread must have a pager; should the pager get deleted, the thread will remain active.

thread_pager € threads - TCB A

Sigma0 does not have a pager. The root server’s pager is always Sigma0.

kSigma0 ¢ dom ( thread_pager ) A

Non-halted interrupt threads are their own pagers.

V kk . ( kk € kIntThreads A kk & halted_threads = thread_pager ( kk ) = kk ) A
YV kk . ( kk € kIntThreads A kk € halted_threads = thread_pager ( kk ) # kk ) A

Interrupt threads cannot be “running”.

thread_state € threads — THREAD_STATE A
tsRunning & thread_state | kIntThreads | A

Being active and aborted is exclusive to interrupt threads.

active_threads N thread_state ~' [ { tsAborted } ] C kIntThreads A

Only so many threads per address space possible.
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threads_in_space € spaces — 0 .. kMazThreadsPerSpace N
V ss . ( ss € spaces = card ( thread-space > { ss } ) = threads-in_space ( ss ) )

ASSERTIONS
thread_scheduler | kIntThreads | = {}
INITIALISATION

When the system loads, sigma0O and the root server are started.

threads := { kSigma0 , kRootServer } U kIntThreads ||
active_threads = { kSigma0 , kRootServer } U kIntThreads ||
thread_space := { kSigma0 — kSigma0OSpace ,
kRootServer — kRootServerSpace } U kIntThreads x { kKernelSpace } ||
thread_gno :€ { kSigma0 , kRootServer } U kintThreads — GLOBAL_-TNO — { kNilGNo , kAnyGNo } ||

Interrupt threads start up disabled.
halted_threads := {} ||

sigma0 does not have a pager, but is the pager for root server. Interrupt threads are their own pagers.
thread_pager := { kRootServer — kSigma0 } U id ( kIntThreads ) ||

root server is scheduler for sigma0 and itself

thread_scheduler := { kSigma0 — kRootServer |
kRootServer — kRootServer } ||

sigmal and the root server are initialised as running, while the interrupt threads as aborted.

thread_state := { kSigma0 — tsRunning , kRootServer — tsRunning } U kIntThreads x { tsAborted } ||

Set up proper thread counters.

threads_in_space := { kSigma0Space — 1 , kRootServerSpace — 1 |
kKernelSpace — card ( kIntThreads ) }

OPERATIONS

Create a thread. Need to supply a free tcb, ids, and an address space for the thread to go into.

If address space is not one known to the system, create it.

In accordance with the spec, the scheduler is not checked until an attempt is made to activate the
thread.

CreateThread ( tcb , global_tno , space , scheduler ) =

PRE tcb € TCB — threads N

global_tno € GLOBAL_TNO A

global_tno ¢ ran ( thread_gno ) A

global_tno # kNilGNo A

global_tno # kAnyGNo A

scheduler € TCB N

space € ADDRESS_SPACE N

space # kKernelSpace N

( space € spaces = threads_in_space ( space ) < kMaxThreadsPerSpace )
THEN

If the space doesn’t exist, the thread is it’s first member.
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IF  space & spaces THEN
CreateAddressSpace ( space ) ||

threads_in_space ( space ) := 1
ELSE

threads_in_space ( space ) := threads_in_space ( space ) + 1
END |

threads := threads U { tcb } ||
thread_gno ( tcb ) := global_tno ||
thread_space ( tcb ) := space ||
thread_scheduler ( tcb ) := scheduler ||

All threads are created inactive.
Until active, the thread is not ready for running.

thread_state ( tcb ) := tsAborted
END ;

Activate thread. Requires a pager. Higher-level operations should ensure that the waiting forever
is for a message from this thread’s pager. Migration during activation is possible.

ActivateThread ( tcb , space , pager , scheduler ) =
PRE tcb € threads A tcb & active_threads N
pager € threads A

Scheduler must exist and be running for activation.

scheduler € active_threads N

If migration is necessary, target space must not be full.

space € nitialised_spaces N
( space # thread_space ( tcb ) =

threads_in_space ( space ) < kMaxzThreadsPerSpace )
THEN

thread_pager ( tcb ) := pager ||

thread_scheduler ( tcb ) := scheduler ||

active_threads = active_threads U { tcb } ||

Threads will be waiting for wake-up IPC from their pager.

thread_state ( tcb ) = tsWaitingForever ||

Migrate if necessary.
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IF  space # thread_space ( tcb) THEN
thread-space ( tcb ) := space ||

threads_in_space := threads_in_space < { space — threads_in_space ( space ) + 1,
thread_space ( tcb ) v threads_in_space ( thread_space ( tcb ) ) — 1 }
END
END ;

CreateActiveThread ( tcb , global_tno , space , scheduler | pager ) =

PRE tcb € TCB — threads N

global_tno € GLOBAL_TNO A

global_tno ¢ ran ( thread_gno ) A

global_tno # kNilGNo A

global_tno # kAnyGNo A

scheduler € active_threads N

pager € threads A

space € nitialised_spaces N

space # kKernelSpace N

( space € spaces = threads_in_space ( space ) < kMaxThreadsPerSpace )
THEN

If the space doesn’t exist, the thread is it’s first member.
IF  space & spaces THEN

CreateAddressSpace ( space ) ||

threads_in_space ( space ) := 1
ELSE

threads_in_space ( space ) := threads_in_space ( space ) + 1
END |

threads := threads U { tcb } ||
active_threads = active_threads U { tcb } ||
thread_gno ( tcb ) := global_tno ||
thread_space ( tcb ) := space ||
thread_scheduler ( tcb ) := scheduler ||
thread_pager ( tcb ) := pager ||

Threads will be waiting for wake-up IPC from their pager.

thread_state ( tcb ) := tsWaitingForever
END ;

Deleting threads. Cannot delete a privileged thread. Higher level operations override this to delete
other aspects of threads those machines define. If thread is the last one in an address space, delete
the address space. No attempt to figure out whose pager or scheduler this thread was.

DeleteThread ( tcb ) =
PRE tcb € threads A thread_space ( tcb ) # kSigma0OSpace A
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thread_space ( tcb ) # kRootServerSpace N
thread_space ( tcb ) # kKernelSpace

THEN
threads = threads — { tcb } ||
active_threads := active_threads — { tcb } ||
halted_threads := halted_threads — { tcb } ||
thread_space := { tcb } < thread_space ||
thread_state := { tcb } < thread_state ||
thread_pager := { tcb } < thread_pager ||
thread_scheduler := { tcb } < thread_scheduler ||
thread_gno = { tcb } < thread_gno ||
IF  { tcb } = thread_space ~' [ { thread_space (tcb )} ] THEN

Last thread in this space. Address space must be removed too.

DeleteAddressSpace ( thread_space ( tchb ) ) ||
threads_in_space := { thread_-space ( tcb ) } < threads_in_space
ELSE
threads_in_space ( thread_space ( tcb ) ) :=
threads_in_space ( thread-space ( tcb ) ) — 1
END
END ;

The scheduler must actually be a valid thread, as suggested by the Reference Manual section 2.4
ThreadControl.

SetScheduler ( tcb , scheduler ) =
PRE tcb € threads N scheduler € threads THEN
thread_scheduler ( tcb ) := scheduler
END ;

Migrate ( tcb , space ) =
PRE tcb € threads A space € spaces N

It must fit into the new space.

( space # thread_space ( tcb ) =
threads_in_space ( space ) < kMaxzThreadsPerSpace )
THEN
IF  space # thread_space ( tcb) THEN
thread-space ( tcb ) := space ||
threads_in_space := threads_in_space < { space — threads_in_space ( space ) + 1 ,
thread_space ( tcb ) v threads_in_space ( thread_space ( tcb ) ) — 1 }
END
END ;

MigrateAndSetScheduler ( ¢cb , space , scheduler ) =
PRE tcb € threads A space € spaces N scheduler € threads N
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It must fit into the new space.

( space # thread_space ( tcb ) =

threads_in_space ( space ) < kMaxzThreadsPerSpace )
THEN

thread_scheduler ( tcb ) := scheduler ||
IF  space # thread_space ( tcb) THEN
thread_space ( tcb ) := space ||
threads_in_space := threads_in_space < { space — threads_in_space ( space ) + 1,

thread_space ( tcb ) — threads_in_space ( thread_space ((tcb ) ) — 1 }
END

END

9

Only allow transitions between Running and Waiting. Use other operations for transitioning from
Aborted.

SetState ( tcb , state ) =
PRE state € THREAD_STATE A state # tsAborted A tcb € active_threads N
teb & kintThreads THEN
thread_state ( tcb ) := state
END

9

Halting an interrupt thread means the thread is activated, and a pager (handler) should be supplied.

ActivateInterrupt ( tcb , handler ) =
PRE tcb € kintThreads A handler € TCB A handler # tcb THEN
halted_threads := halted_threads U { tcb } ||
thread_pager ( tcb ) := handler
END

)
DeactivateInterrupt ( tcb ) =
PRE tcb € kintThreads THEN
halted_threads := halted_threads — { tcb } ||
thread_pager ( tcb ) := tcb
END

9

If a thread has been waiting or polling, and IPC wants to resume it, various things can happen.

UnWait (teb) =
PRE tcb € threads THEN

SELECT  tcb € active_threads N tchb & kintThreads THEN
thread_state ( tcb ) := tsRunning
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WHEN  {cb € active_threads N tcb € kIntThreads THEN
thread_state ( tcb ) := tsAborted
ELSE
thread_state ( tcb ) := tsAborted
END
END ;

When sending to a thread waiting for you, and a receive phase is included, that thread starts
running and you wait.

WakeUpAndWait ( running_-tch , waiting_tcb , wait_state ) =
PRE running_tcb € active_threads A waiting_tchb € active_threads N
isWaiting ( wait_state ) A
isRunning ( thread_state ( running-tcb ) ) A
isWaiting ( thread_state ( waiting-tch ) )
THEN

Interrupt threads go back to an aborted status, not a running one.

IF  waiting_tcb € kIntThreads THEN
thread_state := thread_state < { running_tcb — wait_state ,
waiting-tch — tsAborted }
ELSE
thread_state := thread_state < { running_tcb — wait_state ,
waiting-tch — tsRunning }
END
END ;

The thread portion of ExchangeRegisters

ThreadExchangeRegisters ( icb , control , pager , unwait ) =
PRE tcb € threads A control C EXREGS_FLAGS A pager € TCB A
teb & kIntThreads N unwait € BOOL
THEN
IF  ex_p € control THEN
thread_pager ( tcb ) := pager
END ||
IF  ex_h € control THEN
IF  ex_H € control THEN
halted_threads := halted_threads — { tcb }
ELSE
halted_threads := halted_threads U { tcb }
END
END I
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IF  wnwait = TRUE THEN
IF  tcb € active_threads THEN
thread_state ( tcb ) := tsRunning
ELSE
thread_state ( tcb ) := tsAborted
END
END
END ;

When the scheduler makes an IPC happen between a polling and receiving thread, they both revert
to running.

DualWakeUp ( polling_tch , waiting_tcb ) =
PRE polling_tcb € active_threads N waiting-tcb € active_threads N
isPolling ( thread_state ( polling-tch ) ) A
isWaiting ( thread_state ( waiting-tch ) )
THEN

Interrupt threads go back to an aborted status, not a running one.

SELECT  polling-tcb € kIntThreads N waiting-tcb € kIntThreads THEN

thread_state := thread_state < { polling_tcb — tsAborted , waiting_tch — tsAborted }
WHEN  polling_tcb € kIntThreads N waiting_tcb & kIntThreads THEN

thread_state := thread_state < { polling_tcb — tsAborted , waiting-tcb — tsRunning }
WHEN  polling_tcb & kIntThreads N waiting_tcb € kIntThreads THEN

thread_state := thread_state < { polling_tcb — tsRunning , waiting_tcb — tsAborted }
WHEN  polling_tcb & kIntThreads N waiting_tcb & kIntThreads THEN

thread_state := thread_state < { polling_tcb — tsRunning , waiting_tcb — tsRunning }
END

END

END
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A.6 AddressSpace

MACHINE AddressSpace

SEES
AddressSpaceCtx , Kernellnformation

VARIABLES

spaces
Initialisation data.

initialised_spaces
INVARIANT
spaces € ADDRESS_SPACE A

initialised_spaces C spaces

INITIALISATION

Initialise privileged address spaces to their predefined constants.

spaces = { kSigmaOSpace , kRootServerSpace , kKernelSpace } ||
initialised_spaces := { kSigma0Space , kRootServerSpace , kKernelSpace }

OPERATIONS
Create an address space. Requires an unused address space to be passed in.

CreateAddressSpace ( space ) =
PRE space € ADDRESS_SPACE — spaces THEN

spaces := spaces U { space }

END ;

Initialise the space.

InitialiseAddressSpace ( space )
THEN

PRE  space € spaces
:= initialised_spaces U { space }

initialised_spaces :

END ;

Delete an address space. Cannot delete privileged spaces. They are integral to the system
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DeleteAddressSpace ( space ) =
PRE space € spaces A — ( dIsPrivilegedSpace ( space ) ) THEN
spaces := spaces — { space } ||
initialised_spaces := initialised_spaces — { space }

END
END
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A.7 Kernellnformation

MACHINE Kernellnformation

The system only supports a given number of threads. Additionally, each address space also has a
limit. Since there are two initial threads (roottask, sigma0) in their own address spaces, plus some
non-zero number of kernel threads, the absolute lower limit for both maxThreads is 3. Since no
address space can exist without a thread in it, the absolute minimum for kMaxThreadsPerSpace
is 1.

Three address spaces are initially constructed: kernel, roottask, sigma0, therefore the minimum
for address spaces is 3.

CONSTANTS

kMaxThreads
kMaxThreadsPerSpace
kMazAddressSpaces

PROPERTIES

kMazThreads € Ny A

8 < kMazxThreads N
kMazThreadsPerSpace € N1 A
kMazAddressSpaces € Ny A

3 < kMazAddressSpaces

END
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A.8 ThreadCtx

MACHINE ThreadCtx
SEES Kernellnformation
SETS

TCB ;

An ExchangeRegisters call gets a subset of these which define what actions will be performed.

EXREGS-FLAGS = { ex_h , ex_p , exu , ex-f , ex_i, exs,exS ,ex R, exH }

The choice of which TCBs get allocated to the privileged tasks is completely arbitrary, but NOT
random, so they are constants defined by the implementor.

CONSTANTS

kSigma0 |
kRootServer |
kIntThreads

PROPERTIES

card ( TCB ) = kMaxzThreads N

kSigma0 € TCB A

kRootServer € TCB A

= ( kSigma0 = kRootServer ) A

kIntThreads C TCB A

kIntThreads # {} A

card ( kIntThreads ) < kMaxThreadsPerSpace A
kSigma0 & kIntThreads N

kRootServer & kIntThreads

DEFINITIONS

canSend (t) = thread_state (t) € { tsRunning , tsPolling } ;
canReceive (t) = thread_state (¢ ) € { tsWaitingTimeout , tsWaitingForever }

END
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A.9 ThreadldCtx

MACHINE ThreadldCtx
SEES
Bool_ TYPE , Kernellnformation

Since thread versions are an optimisation feature used for thread renaming and local thread ids an
IPC optimisation, they are left out here.

SETS
Global thread identifiers.

GLOBAL_TNO
CONSTANTS

Global thread numbers representing no thread and any thread respecively.
kNilGNo
kAnyGNo

PROPERTIES

The maximum number of threads in the system does not take into account the extra thread
numbers representing any and no thread.

card ( GLOBAL_TNO ) = kMaxThreads + 2 A
kNilGNo € GLOBAL_TNO A
kAnyGNo € GLOBAL_TNO A kAnyGNo # kNilGNo

END
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A.10 ThreadStateCtx

MACHINE ThreadStateCtx

Simplified.

SETS

THREAD_STATE = { tsRunning ,
tsWaitingForever
tsWaiting Timeout ,
tsPolling ,
tsAborted }

DEFINITIONS

isRunnable (s) = s = tsRunning ;

isSending (s ) = s={ tsPolling } ;

isReceiving (s ) = s € { tsWaitingForever , tsWaitingTimeout }
isAborted (s ) = s = tsAborted ;

isRunning (s ) = s = tsRunning

isWaiting (s ) = s € { tsWaitingForever , tsWaitingTimeout } ;
isWaitingForever (s ) =

isWaiting With Timeout ( s )

~

isPolling (s) = s = tsPolling

s = tsWaitingForever ;

o~

s = tsWaitingTimeout ;

END
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A.11 TimeoutCtx

MACHINE TimeoutCtx
SETS

TIMEOUT = { eZeroTimeout , eFiniteTimeout , eInfinite Timeout }
DEFINITIONS

isFinite (t) = t = eFiniteTimeout ;

isInfinite (t) = t = elnfiniteTimeout ;
isNoTimeout (t) = t = eZeroTimeout

END
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A.12 AddressSpaceCtx

MACHINE AddressSpaceCtx
SEES

Kernellnformation
SETS

ADDRESS_SPACE
CONSTANTS

kSigma0OSpace ,
kRootServerSpace
kKernelSpace

L4 needs any 3 spaces reserved, but the implementer decides which ones to use (eg. the first 3
might be the most efficient), so they can be treated as constants defined during implementation.

PROPERTIES

card ( ADDRESS_SPACE ) = kMazxAddressSpaces A
kRootServerSpace € ADDRESS_SPACE N
kSigma0Space € ADDRESS_SPACE A
kKernelSpace € ADDRESS_SPACE A
kRootServerSpace # kSigma0Space N

kSigma0Space # kKernelSpace N

kRootServerSpace # kKernelSpace

DEFINITIONS

dIsPrivilegedSpace (s) = s € { kSigmaOSpace , kRootServerSpace ,
kKernelSpace }

END
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A.13 FpageCtx

MACHINE FpageCix

An Fpage is represented by the base, size, and set of permissions.

SETS

PERMS = { pfRead , pfWrite , pfExecute }
DEFINITIONS
dFpage (b,s,p) = b,s,p;
dFpagePerms = pri2 (N x N P ( PERMS ) ) ;
dFpageBase ( f ) =
dFpageSize ( f) =
dIsFpage (f) = feNxNxP(PERMS);
FPAGE = N x N x P ( PERMS)
END
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A.14 ErrorCtx

MACHINE ErrorCtz
SETS

ERROR = { eNoError ,
eSendTimeout , eSendNonEzistingPartner , eSendCancelled ,
eRecvTimeout , eRecvNonEzistingPartner , eRecvCancelled ,
eMsgOverflow , eXferTimeoutSender , eXferTimeoutReceiver ,
eAborted |
eNoPrivilege , eUnavailable Thread , elnvalidSpace
elnvalidScheduler , eOutOfMemory
elnvalidThread , eInvalidUtcbLocation
elnvalidUtcbArea , elnvalidKipArea |
eInvalidParameter }

DEFINITIONS

dIpcFailures = { eMsgOverflow , eXferTimeoutSender ,
eXferTimeoutReceiver , eAborted }

END
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A.15 Bool TYPE

MACHINE  Bool_.TYPE
SETS BOOL = { FALSE , TRUE }
END
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