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Heterogeneous chip-multi-processors

• ‘Asymmetric Multi-Processing’ (AMP)

– several different processors / cores
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Core asymmetry

Core Core

Core

Memory

Core

• Performance
– different frequency
– different pipelines
– different size caches/TLBs
– etc.

• Instruction Set Architecture
– ARMv7 vs Thumb
– SSE vs no SSE
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Benefits of heterogeneous systems

• Energy efficiency

– small cores have a small die area

– low-power off-load allows big cores to sleep while small cores work 

• Computational efficiency in general

– can fit more small cores in a given area giving greater parallel 
performance

– single-threaded workloads can still get performance on a big core
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OS design for heterogeneous processors

• Models
– restrictive
– hybrid
– unified
– distributed
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Restrictive model

• Restrict all programs to the sub set of features supported by 
both types of cores

• Limited to a subset of features
– performance may not be as good as it could be
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Hybrid model

• Allow user programs to interrogate the heterogenous 
capabilities of the system

• Allows user programs to execute on the cores that provide 
the features they need.
– on Intel, CPUID
– sched_setaffinity(target_core)
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Unified model

• Allow programs to use the combined feature set of the two 
types of cores

• Fault-and-migrate when an unsupported feature is requested

• Proxy instructions in light-weight processes

• Requires a lot of OS trickery
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Distributed shared-memory model
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Distributed shared-memory model

• Simply provide a mechanism for loading and running code on 
different cores

– SPUfs

• IBM Cell processor

• filesystem based, at least it fits the Unix model!

– TI SysLink

• provides mechanism to load software into co-processors

• runs within the TI SYS/BIOS OS framework
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Pandaboard

• USB, DVI/HDMI, Ethernet, WiFi, Bluetooth, SD-card, etc...

The first OMAP4430 hardware platform
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PEAP project

• TI gave us a free Pandaboard!

– Pandaboard Early Adopter Program (PEAP)

– project chosen from about 50 potentials

• The plan was...

– a single Linux image running on both architectures

– treat both types of core as general-purpose

– examine effects on

• Energy consumption

• Efficiency
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TI OMAP 4430
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What cores?

Cortex-A9 MPU Subsystem

L2 Cache

L3 Interconnect

Cortex-A9

L1 Cache

Dual Cortex-M3 MPU Subsystem

Cortex-M3

NVIC

Cortex-M3

NVIC

L1 Shared Cache & MMU

L2 MMU

OMAP4430

Cortex-A9 Multicore Processor

Snoop Control UnitGIC

MMU

Cortex-A9

L1 Cache

MMU

ARM Cortex-A9 Core ARM Cortex-M3 Core
Architecture
ISA Support

Memory Protection
Clock Speed

ARM v7-A ARM v7-M
ARM, Thumb-2, floating-point, NEON, DSP, Jazelle Thumb-2

Memory Management Unit Optional 8 region MPU
1.0 GHz 266 MHz
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A common instruction (sub)set exists

• Both A9 and M3 support  Thumb-2, but...

• Neither support all the features of  Thumb-2

• No strict subset of user-visible ISA between A9 / M3

– SDIV / UDIV (M3 only)

– UMAAL, SSAT16, USAT16, SETEND (A9 only)

– optional DSP extension (A9 only)



© NICTA 2012 from imagination to impact

A common instruction (sub)set exists

• Both A9 and M3 support  Thumb-2, but...

• Neither support all the features of  Thumb-2

• No strict subset of user-visible ISA between A9 / M3

– SDIV / UDIV (M3 only)

– UMAAL, SSAT16, USAT16, SETEND (A9 only)

– optional DSP extension (A9 only)

• System ISA is also completely different
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Thumb-2 support for kernel
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Thumb-2 support for kernel

• An easy first step
– a small amount of assembly hacking
– found bug in OMAP init routines, booting second core in ARM mode
– userspace-helper functions still compiled as ARM

• ABI defines them as ARM
• glibc tries to put the CPU in ARM mode
• patch glibc! more later...
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Thumb-2 support for kernel

• An easy first step
– a small amount of assembly hacking
– found bug in OMAP init routines, booting second core in ARM mode
– userspace-helper functions still compiled as ARM

• ABI defines them as ARM
• glibc tries to put the CPU in ARM mode
• patch glibc! more later...

• It works!
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A second step...

          ...Linux on the Cortex-M3!
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A second step...

• Standard Linux does not support the Cortex-M3 :-(

– M3 core is designed for small embedded systems without a MMU

• uClinux support exists

– fork of Linux designed to support small micro-controllers

• Our plan

– take the support from uClinux and put it into standard Linux

– Linux can’t directly boot an M3 core, so...

– partition memory in two

– bootstrap M3 Linux from A9 Linux

          ...Linux on the Cortex-M3!
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Problems with Linux on the Cortex-M3

• Memory management

• Exception handling 

• Toolchain
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• Page table
– virtual-to-physical memory mappings 
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Memory management

• Page table
– virtual-to-physical memory mappings 

• Memory management unit (MMU)
– translation
– permissions (read-only, execute-only)

• Translation look-aside buffer (TLB)
– cache for virtual memory mappings
– software loaded
– hardware pagetable walker
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Memory management on the Cortex-M3

Cortex-A9 MPU Subsystem
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Cortex-A9

L1 Cache

Dual Cortex-M3 MPU Subsystem
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L1 Shared Cache & MMU

L2 MMU

OMAP4430

Cortex-A9 Multicore Processor

Snoop Control UnitGIC

MMU
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L1 Cache
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Memory management on the Cortex-M3

• Subsystem’s shared MMUs
– L1 shared cache & MMU

• 10 entry TLB

• read-only & execute-only permissions

• software loaded

– L2 MMU
• 32 entry TLB

• hardware walker (ARMv6 without permissions)
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Memory management on the Cortex-M3

• Subsystem’s shared MMUs
– L1 shared cache & MMU

• 10 entry TLB

• read-only & execute-only permissions

• software loaded

– L2 MMU
• 32 entry TLB

• hardware walker (ARMv6 without permissions)

• Limitations
– no supervisor-mode permissions - separate kernel page table

– no tagged TLB - flush the TLB on every context switch

Cortex-A9 MPU Subsystem

L2 Cache

L3 Interconnect

Cortex-A9

L1 Cache

Dual Cortex-M3 MPU Subsystem

Cortex-M3

NVIC

Cortex-M3

NVIC

L1 Shared Cache & MMU

L2 MMU

OMAP4430

Cortex-A9 Multicore Processor

Snoop Control UnitGIC
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Cortex-A9

L1 Cache

MMU



© NICTA 2012 from imagination to impact

Copy on write

• Used throughout Linux
– shared pages, fork
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• Used throughout Linux
– shared pages, fork
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Copy on write

• Used throughout Linux
– shared pages, fork

ChildParent Memory

read-onlyread-only

read-only

read-write
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Memory management on the Cortex-M3

• Subsystem’s shared MMUs
– L1 shared cache & MMU

• 10 entry TLB

• read-only & execute-only permissions

• software loaded

– L2 MMU
• 32 entry TLB

• hardware walker (ARMv6 without permissions)

• Limitations
– no supervisor-mode permissions - separate kernel page table

– no tagged TLB - flush the TLB on every context switch

Cortex-A9 MPU Subsystem

L2 Cache

L3 Interconnect

Cortex-A9

L1 Cache

Dual Cortex-M3 MPU Subsystem
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Read-only pages

• Hidden from L2 walker
– marked invalid in the pagetable
– causes a fault when access

• Manually loaded into L1
– with correct permissions
– no translation

• L2 kept in sync with the L1
– MMUs in series, double translation
– avoid L2 faulting

L1 TLB (Permission & Translation)

M3

L2 TLB (Only Translation)

Memory

Virtual Address

Virtual Address

Physical Address
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Exception handling on the Cortex-M3
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Exception handling on the Cortex-M3

• M3 exception entry behaviour

– core saves its state to memory pointed 
to by the current stack pointer
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• M3 exception entry behaviour

– core saves its state to memory pointed 
to by the current stack pointer

• Dynamic stack allocation

– access past the end of the stack results 
in a fault

– kernel catches the fault, more stack is 
allocated

Stack

Stack guard page

Other memory
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Exception handling on the Cortex-M3

• M3 exception entry behaviour

– core saves its state to memory pointed 
to by the current stack pointer

• Dynamic stack allocation

– access past the end of the stack results 
in a fault

– kernel catches the fault, more stack is 
allocated

• Stack faults on M3 are unrecoverable

– preallocate and pin entire stack

– no dynamically resizing the stack

Stack

Stack guard page

Other memory
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• Glibc does not produce pure Thumb-2

– userspace-helpers

– hand coded ARM assembly, e.g. memcpy implemented in ARM assembly
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Toolchain for userspace applications

• Glibc does not produce pure Thumb-2

– userspace-helpers

– hand coded ARM assembly, e.g. memcpy implemented in ARM assembly

• Binutils 

– Procedure Linkage Table (PLT) used for dynamic binding shared libraries 
implemented with ARM

– stick with static binaries for now
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Linux now works on the M3 and supports userspace...
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Linux now works on the M3 and supports userspace...

... beside an A9
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Modifying Linux to support the A9s and M3s

• Unified model
– performance overhead of migrations

• Hybrid model
– no forced restriction of features
– allow the user to interrogate system

• Restrictive model
– restrict to subset of features
– allows any process to run on any core
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Implementing this in Linux

• Compiling for the subset of  Thumb-2

• Producing a single image

• Synchronisation

• Supporting live migration

• Interrupts
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Compiling for multiple architectures
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Compiling for multiple architectures

• Compile a single image which can boot either A9 or M3

• Patched binutils

– compile C to common subset of Thumb-2

– allow for both architecture’s special register/co-processor instructions

• cp15 (A9 co-processors for system control, cache, MMU)

• PRIMASK, FAULTMASK, BASEPRI (M3 mask registers)
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Single kernel image
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Single kernel image

• ARM Linux can be compiled for multiple processors

– multiple processor abstraction (proc_info)

• allows compiling support for multiple processors into a single image

– extended to incorporate architectural (system ISA) differences

• interrupt enabling/disabling, co-processors, exception handling
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Single kernel image

• ARM Linux can be compiled for multiple processors

– multiple processor abstraction (proc_info)

• allows compiling support for multiple processors into a single image

– extended to incorporate architectural (system ISA) differences

• interrupt enabling/disabling, co-processors, exception handling

• Running the kernel on both A9 and M3

– per core (A9/M3) MMU mapping for proc_info struct, each core can see 
its own functions
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Synchronisation

• Cross-subsystem synchronisation

– locks are implemented using an atomic operation

– ARM’s exclusive monitor won’t work (LDREX, STREX)

– implement synchronisation primitives with hardware spin-locks

Cortex-A9 MPU Subsystem

L2 Cache

L3 Interconnect

Cortex-A9

L1 Cache

Dual Cortex-M3 MPU Subsystem

Cortex-M3

NVIC

Cortex-M3

NVIC

L1 Shared Cache & MMU

L2 MMU

OMAP4430

Cortex-A9 Multicore Processor

Snoop Control UnitGIC

MMU

Cortex-A9

L1 Cache

MMU
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Synchronisation

• Inter-processor interrupts

– trigger, signal completion

– no direct interrupts between A9 and M3

– OMAP’s mailbox
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– no direct interrupts between A9 and M3
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Synchronisation

• Inter-processor interrupts

– trigger, signal completion

– no direct interrupts between A9 and M3

– OMAP’s mailbox

A9 Core

A9 Core

M3 Core

M3 Core

Mailbox
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• Exception handling

– manipulate status registers and saved registers to consistent format

– return to the correct exception return path
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Supporting migration

• Page-tables

– both subsystems use ARMv6 pagetable format

– read-only mapping must be invalidated when running on the M3

• Exception handling

– manipulate status registers and saved registers to consistent format

– return to the correct exception return path

• Live migration

– taskset, sched_setaffinity
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Interrupts

• Interrupt controller

– the M3 and A9 cannot access each other’s interrupt controllers

– masking certain interrupts can only be done on certain cores

– interrupts are not easily distributed, some interrupts are not mapped to 
the M3 subsystem

A9 
subsystem

M3 
subsystem

Interrupts
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Interrupts

• Interrupt controller

– the M3 and A9 cannot access each other’s interrupt controllers

– masking certain interrupts can only be done on certain cores

– interrupts are not easily distributed, some interrupts are not mapped to 
the M3 subsystem

• This means that Linux can not completely run on the M3.

A9 
subsystem

M3 
subsystem

Interrupts
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Now, Linux runs with both the M3 and A9, and we 
can migrate tasks between them!
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Awesome! But what about performance?

• Investigate the overheads of our changes

• EEMBC
– embedded benchmarking suite
– wide range of workloads

• automotive
• telecommunications
• networking
• ‘consumer’
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Awesome! But what about performance?

• Performance is really bad

Graph will go here...
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AMP Linux Unmodified Linux



• Caches provide improved latency
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Caches are off!

Disk Storage
(Hard drive)

Main Memory
(RAM)

Cache
(L1, L2)

CPU
(Registers)
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Caching on a multi-core system

• Shared caches
– high latency
– shared memory

• Local caches
– low latency
– less cache per CPU
– cache coherency issues

• Combination

Cortex-A9 MPU Subsystem

L2 Cache

L3 Interconnect

Cortex-A9

L1 Cache

Dual Cortex-M3 MPU Subsystem

Cortex-M3

NVIC

Cortex-M3

NVIC

L1 Shared Cache & MMU

L2 MMU

OMAP4430

Cortex-A9 Multicore Processor

Snoop Control UnitGIC

MMU

Cortex-A9

L1 Cache

MMU
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Cache coherency

• Sharing memory
– out of date data
– notify other cores of changes

to data

• Cache coherency protocols
– snooping (MOESI protocol)

• requires hardware support

Cortex-A9 MPU Subsystem

L2 Cache

L3 Interconnect

Cortex-A9

L1 Cache

Dual Cortex-M3 MPU Subsystem

Cortex-M3

NVIC

Cortex-M3

NVIC

L1 Shared Cache & MMU

L2 MMU

OMAP4430

Cortex-A9 Multicore Processor

Snoop Control UnitGIC

MMU

Cortex-A9

L1 Cache

MMU
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Enabling caches
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Enabling caches

• No shared cache between the A9 and M3s

– sharing must occur at main memory
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Enabling caches

• No shared cache between the A9 and M3s

– sharing must occur at main memory

• No hardware support for cross-subsystem cache coherency

– efficient cache coherency requires hardware support (snooping)



© NICTA 2012 from imagination to impact

Enabling caches
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Enabling caches

• Big lock based coherency - introducing Linux 2.0!

– restrict to one CPU in the kernel (lots of waiting)

– flush all caches on acquire/release (lots of flushing)

– interrupt for signalling contention

?
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Now we have caching!
Lets ignore the BKL for now ;-)
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Overhead

• Compare performance of just an A9 core

• Vary what the M3 core is doing
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Overhead

• Compare performance of just an A9 core

• Vary what the M3 core is doing
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Overhead

• Compare performance of just an A9 core

• Vary what the M3 core is doing
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System throughput
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System throughput

• Performance is still not great

– M3 doesn’t make up for overheads

– worst case due to high L1 TLB (software loaded) miss rate, as the M3 
spends most of its time refilling the L1 TLB, locking the A9 out of the 
kernel
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Using the system
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M3 vs A9
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Can the system be used in its current state?

• Can energy-efficiency be improved by using the M3s?
– performance overheads negate any savings 

• How can the system know how each core will perform?

• How can scheduling decisions be made?
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Modelling the performance of each core

• Run on the A9 for a short time, measure some predictors
– cache misses
– instructions executed
– branches correctly predicted
– TLB miss rate *
– etc

• Plug these numbers into a model

• Decide whether it’s worth migrating...

• Prediction is within about 10% error for a wide range of 
workloads from EEMBC
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Conclusion

• Linux can now schedule tasks on both A9 or M3 cores

– overheads are high mostly due to lack of hardware support

– with a bit of support from the hardware, the system should be usable

• With the right counters, performance prediction is accurate

– again, hardware support would help, either provide performance 
counters on the M3s or better performance counters on the A9s.

• It only took 8500 lines to do.

– No, we haven’t pushed it upstream.

– If you’re interested in the details, look out for a potential Usenix ATC 
publication - fingers crossed.
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Expected Questions

• Will we push the changes upstream?
– a lot of changes to linux for not much gain atm.
– very specific to OMAP4430, which is not very useful.


