Operating System Support for the
Heterogeneous OMAP4430:
A tale of two micros

Etienne Le Sueur and Simon Rodgers
with Aaron Carroll and Bernard Blackham

Linux.conf.au, Ballarat
|7 January 2012

NICTA Funding and Supporting Members and Partners

.
%mmnmcﬂ-m &m !J.NS.W NSW lem @ Victoria .‘.‘.%‘;
and the Digital Economy
Australian Research Council B sovE ": : Wy Griffith & Qe

Traditional chip-multi-processors

e Symmetric Multi-Processing (SMP)

— two or more identical processors / cores

NICTA

Memory

© NICTA 2012

from imagination to impact

Traditional chip-multi-processors NICTA

e Symmetric Multi-Processing (SMP)

— two or more identical processors / cores

Memory Memory

© NICTA 2012 from imagination to impact

Heterogeneous chip-multi-processors

* ‘Asymmetric Multi-Processing’ (AMP)

— several different processors / cores

NICTA

Memory

© NICTA 2012

from imagination to impact

Core asymmetry

NICTA

Memory

© NICTA 2012

from imagination to impact

Core asymmetry NICTA

Memory

© NICTA 2012 from imagination to impact

Core asymmetry NICTA

* Performance
— different frequency
— different pipelines
— different size caches/TLBs

— etc.

Memory

-
.. \

&

© NICTA 2012 from imagination to impact

,\—
e

T ——

Core asymmetry NICTA

* Performance
— different frequency
— different pipelines
— different size caches/TLBs

— etc.

e |Instruction Set Architecture
— ARMv7 vs Thumb
— SSE vs no SSE

Memory

© NICTA 2012 from imagination to impact

e —

h__f
_é\ S, — O‘
Benefits of heterogeneous systems NICTA

* Energy efficiency

— small cores have a small die area

— low-power off-load allows big cores to sleep while small cores work
e Computational efficiency in general

— can fit more small cores in a given area giving greater parallel
performance

— single-threaded workloads can still get performance on a big core

OS design for heterogeneous processors NICTA

e Models

— restrictive
— hybrid
— unified
— distributed

© NICTA 2012 from imagination to impact

Restrictive model NICTA

e Restrict all programs to the sub set of features supported by
both types of cores

e Limited to a subset of features

— performance may not be as good as it could be

Hybrid model NICTA

e Allow user programs to interrogate the heterogenous
capabilities of the system

e Allows user programs to execute on the cores that provide
the features they need.

— on Intel, CPUID
— sched_setaffinity(target core)

e — — e ——— O.

Unified model NICTA

* Allow programs to use the combined feature set of the two
types of cores

* Fault-and-migrate when an unsupported feature is requested
* Proxy instructions in light-weight processes
e Requires a lot of OS trickery

Distributed shared-memory model NICTA

© NICTA 2012 from imagination to impact

— e —————— e

Distributed shared-memory model NICTA

e Simply provide a mechanism for loading and running code on
different cores

— SPUfs
* IBM Cell processor

* filesystem based, at least it fits the Unix model!
— T1 SysLink
* provides mechanism to load software into co-processors

e runs within the TI SYS/BIOS OS framework

Pandaboard NICTA

e USB, DVI/HDMI, Ethernet, WiFi, Bluetooth, SD-card, etc...

The first OMAP4430 hardware platform

© NICTA 2012 from imagination to impact

PEAP project NICTA

* Tl gave us a free Pandaboard!
— Pandaboard Early Adopter Program (PEAP)
— project chosen from about 50 potentials
* The plan was...

— a single Linux image running on both architectures

— treat both types of core as general-purpose

— examine effects on

.....

* Energy consumption

* Efficiency

“““““
......

from imagination to impact

NICTA

Trace SIM card
analyzer MM card

High-Speed GPI0 =
uss 2016 1™ GPI0
MIPI™ CSI-2 W Camera

MIPI™ CSI-2 B Sub camera

graphics accelerator Processor (ISP)

Shared memory controller/DMA

Timers, Interrupt controller, mailbox

Crystal

Boot/secure ROM

M-Shield™ Security Technology: SHA-1/MD5,
DES/3DES, RNG, AES, PKA, secure WDT, keys

Display
eMMC/MMC/SD HDOMI™ controller

REF/CLK J
parallel-serial

MMC/SD
card

eMMC

HD
television

© NICTA 2012 from imagination to impact

OMAP4430
Cortex-A9 MPU Subsystem Dual Cortex-M3 MPU Subsystem
Cortex-A9 Multicore Processor
Cortex-A9 Cortex-A9
Cortex-M3 Cortex-M3
MMU MMU
v !
L1 Cache L1 Cache
NVIC NVIC
v Y : :
> GIC Snoop Control Unit
L1 Shared Cache & MMU
Y
L2 Cache L2 MMU
\ 4
L3 Interconnect

ARM Cortex-A9 Core

ARM Cortex-M3 Core

Architecture

ARM v7-A

ARM v7-M

ISA Support

ARM, Thumb-2, floating-point, NEON, DSP, Jazelle

Thumb-2

Memory Protection

Memory Management Unit

Optional 8 region MPU

Clock Speed

1.0 GHz

266 MHz

A common instruction (sub)set exists NICTA

© NICTA 2012 from imagination to impact

—— O

A common instruction (sub)set exists NICTA

* Both A9 and M3 support Thumb-2, but...

© NICTA 2012 from imagination to impact

A common instruction (sub)set exists NICTA

* Both A9 and M3 support Thumb-2, but...
* Neither support all the features of Thumb-2

© NICTA 2012 from imagination to impact

e ——
B

R ———— — O ‘

—

A common instruction (sub)set exists NICTA

* Both A9 and M3 support Thumb-2, but...

* Neither support all the features of Thumb-2

e No strict subset of user-visible ISA between A9 / M3

— SDIV / UDIV (M3 only)
— UMAAL, SSAT 16, USAT |6, SETEND (A9 only)

— optional DSP extension (A9 only)

h\: ——— T —— O ‘
A common instruction (sub)set exists NICTA

* Both A9 and M3 support Thumb-2, but...

* Neither support all the features of Thumb-2

e No strict subset of user-visible ISA between A9 / M3

— SDIV / UDIV (M3 only)
— UMAAL, SSAT 16, USAT |6, SETEND (A9 only)

— optional DSP extension (A9 only)

e System ISA is also completely different

Thumb-2 support for kernel

BTl ———— - —— - - —— e v ————

i Preemption Model (Preemptible Kernel (Low-Latency Desktop)) ---> I
| -*- Compile the kernel in Thumb-2 mode |
| -*- Use the ARM EABI to compile the kernel |

© NICTA 2012 from imagination to impact

Thumb-2 support for kernel

——— —— - —_— g ——

I Preemption Model (Preemptible Kernel (Low-Latency Desktop)) --->
I -*- Compile the kernel in Thumb-2 mode
l -*- Use the ARM EABI to compile the kernel

* An easy first step
— a small amount of assembly hacking

— found bug in OMAP init routines, booting second core in ARM mode

— userspace-helper functions still compiled as ARM
* ABI defines them as ARM
* glibc tries to put the CPU in ARM mode
* patch glibc! more later...

Thumb-2 support for kernel

I -*- Compile the kernel in Thumb-2 mode |

I Preemption Model (Preemptible Kernel (Low-Latency Desktop)) ---> I
I -*- |Use the ARM EABI to compile the kernel |

* An easy first step
— a small amount of assembly hacking

— found bug in OMAP init routines, booting second core in ARM mode

— userspace-helper functions still compiled as ARM
* ABI defines them as ARM
* glibc tries to put the CPU in ARM mode
* patch glibc! more later...

e |t works!

A second step... NICTA

© NICTA 2012 from imagination to impact

— — O e——

A second step... NICTA

.Linux on the Cortex-M3!

© NICTA 2012 from imagination to impact

A: —

S —

A second step...

.Linux on the Cortex-M3!

e Standard Linux does not support the Cortex-M3 :=(

— M3 core is designed for small embedded systems without a MMU

© NICTA 2012 from imagination to impact

A second step...

.Linux on the Cortex-M3!

e Standard Linux does not support the Cortex-M3 :=(

— M3 core is designed for small embedded systems without a MMU

e uClinux support exists

— fork of Linux designed to support small micro-controllers

NICTA

A second step... NICTA

.Linux on the Cortex-M3!

e Standard Linux does not support the Cortex-M3 :=(

— M3 core is designed for small embedded systems without a MMU

e uClinux support exists

— fork of Linux designed to support small micro-controllers

e Our plan
— take the support from uClinux and put it into standard Linux
— Linux can’t directly boot an M3 core, so...
— partition memory in two

— bootstrap M3 Linux from A9 Linux

A —————

Problems with Linux on the Cortex-M3

* Memory management
e Exception handling
* Joolchain

© NICTA 2012 from imagination to impact

Memory management NICTA

© NICTA 2012 from imagination to impact

Memory management NICTA

* Page table
— virtual-to-physical memory mappings

© NICTA 2012 from imagination to impact

S ——

— —— OQ

Memory management NICTA

* Page table

— virtual-to-physical memory mappings
* Memory management unit (MMU)

— translation
— permissions (read-only, execute-only)

© NICTA 2012 from imagination to impact

Memory management

* Page table

— virtual-to-physical memory mappings

e Memory management unit (MMU)

— translation
— permissions (read-only, execute-only)

* Translation look-aside buffer (TLB)
— cache for virtual memory mappings
— software loaded
— hardware pagetable walker

NICTA

Memory management on the Cortex-M3

© NICTA 2012

Qe

NICTA

Dual Cortex-M3 MPU Subsystem

Cortex-M3

Cortex-M3

v

NVIC

v

NVIC

)

v

L1 Shared Cache & MMU

v

L2 MMU

\/

from imagination to impact

Memory management on the Cortex-M3

* Subsystem’s shared MMUs

— LI shared cache & MMU
* 10 entry TLB

* read-only & execute-only permissions

» software loaded

- L2 MMU
* 32 entry TLB

* hardware walker (ARMv6 without permissions)

NICTA

Dual Cortex-M3 MPU Subsystem

Cortex-M3

Cortex-M3

v

NVIC

v

NVIC

v

v

L1 Shared Cache & MMU

v

L2 MMU

\/

e ——
— _
:R/ — — —
— De
Memory management on the Cortex-M3 NICTA
® Subsystem’s Shared MMUS Dual Cortex-M3 MPU Subsystem
— LI shared cache & MMU
10 TLB Cortex-M3 Cortex-M3
* 10 entry
* read-only & execute-only permissions i I
* software loaded nVic b
! !
— L2 MMU L1 Shared Cache & MMU
!
* 32 entry TLB L2 MMU

* hardware walker (ARMvé6 without permissions) v

-

N
e Limitations
— no supervisor-mode permissions - separate kernel page table
— no tagged TLB - flush the TLB on every context switch
Y

Copy on write NICTA

e Used throughout Linux
— shared pages, fork

© NICTA 2012 from imagination to impact

Copy on write NICTA

e Used throughout Linux

— shared pages, fork

Parent Memory

read-write

>

read-write

>

—

Copy on write

e —

B

e Used throughout Linux

— shared pages, fork

Parent

read-only

Memory

read-only

<€

§\ — _x——.:—_———

read-only

NICTA

Child

<€

read-only

Copy on write

e Used throughout Linux

— shared pages, fork

Parent

read-only

Memory

read-only

<€

read-only

NICTA

Child

/

read-write

e ——
— _
:R/ — — —
— De
Memory management on the Cortex-M3 NICTA
® Subsystem’s Shared MMUS Dual Cortex-M3 MPU Subsystem
— LI shared cache & MMU
10 TLB Cortex-M3 Cortex-M3
* 10 entry
* read-only & execute-only permissions i I
* software loaded nVic b
! !
— L2 MMU L1 Shared Cache & MMU
!
* 32 entry TLB L2 MMU

* hardware walker (ARMvé6 without permissions) v

-

N
e Limitations
— no supervisor-mode permissions - separate kernel page table
— no tagged TLB - flush the TLB on every context switch
Y

Read-only pages

e Hidden from L2 walker
— marked invalid in the pagetable
— causes a fault when access

* Manually loaded into LI

— with correct permissions
— no translation

e L2 kept in sync with the LI
— MMUs in series, double translation
— avoid L2 faulting

NICTA

M3

l Virtual Address

L1 TLB (Permission & Translation)

l Virtual Address

L2 TLB (Only Translation)

l Physical Address

Memory

— — \ e o
— B—

Exception handling on the Cortex-M3 NICTA

© NICTA 2012 from imagination to impact

\

e —

Exception handling on the Cortex-M3 NICTA

* M3 exception entry behaviour

— core saves its state to memory pointed
to by the current stack pointer

© NICTA 2012 from imagination to impact

e e O‘
Exception handling on the Cortex-M3 NICTA

* M3 exception entry behaviour

— core saves its state to memory pointed Stack

to by the current stack pointer

Stack guard page

* Dynamic stack allocation

— access past the end of the stack results
in a fault

— kernel catches the fault, more stack is
allocated

Other memory

e — ———— O‘
Exception handling on the Cortex-M3 NICTA

* M3 exception entry behaviour

— core saves its state to memory pointed Stack

to by the current stack pointer

Stack guard page

* Dynamic stack allocation

— access past the end of the stack results
in a fault

— kernel catches the fault, more stack is
allocated

e Stack faults on M3 are unrecoverable

— preallocate and pin entire stack Other memory

— no dynamically resizing the stack

Toolchain for userspace applications NICTA

© NICTA 2012 from imagination to impact

e ———

R —

Toolchain for userspace applications

* Glibc does not produce pure Thumb-2

— userspace-helpers

— hand coded ARM assembly, e.g. memcpy implemented in ARM assembly

© NICTA 2012 from imagination to impact

Toolchain for userspace applications NICTA

* Glibc does not produce pure Thumb-2

— userspace-helpers

— hand coded ARM assembly, e.g. memcpy implemented in ARM assembly
* Binutils

— Procedure Linkage Table (PLT) used for dynamic binding shared libraries
implemented with ARM

e —

I —

Toolchain for userspace applications NICTA

* Glibc does not produce pure Thumb-2

— userspace-helpers

— hand coded ARM assembly, e.g. memcpy implemented in ARM assembly
* Binutils

— Procedure Linkage Table (PLT) used for dynamic binding shared libraries
implemented with ARM

— stick with static binaries for now

NICTA

Linux now works on the M3 and supports userspace...

© NICTA 2012 from imagination to impact

NICTA

Linux now works on the M3 and supports userspace...

... Deside an A9

© NICTA 2012 from imagination to impact

e —

\—_
— - ———— 0 ®
Modifying Linux to support the A9s and M3s NICTA

¢ Unified model

— performance overhead of migrations

* Hybrid model

— no forced restriction of features
— allow the user to interrogate system

e Restrictive model

— restrict to subset of features
— allows any process to run on any core

Implementing this in Linux NICTA

 Compiling for the subset of Thumb-2
* Producing a single image

e Synchronisation

e Supporting live migration

* Interrupts

from imagination to impact

Compiling for multiple architectures NICTA

© NICTA 2012 from imagination to impact

—

— O

Compiling for multiple architectures NICTA

e Compile a single image which can boot either A9 or M3

© NICTA 2012 from imagination to impact

e ———

R —

Compiling for multiple architectures

e Compile a single image which can boot either A9 or M3

e Patched binutils

— compile C to common subset of Thumb-2

© NICTA 2012 from imagination to impact

- s
e ————— “h“\ —~ o‘

— —_—

Compiling for multiple architectures NICTA

 Compile a single image which can boot either A9 or M3

e Patched binutils

— compile C to common subset of Thumb-2

— allow for both architecture’s special register/co-processor instructions

* cpl5 (A9 co-processors for system control, cache, MMU)

- PRIMASK, FAULTMASK, BASEPRI (M3 mask registers)

Single kernel image NICTA

© NICTA 2012 from imagination to impact

Single kernel image

* ARM Linux can be compiled for multiple processors
— multiple processor abstraction (proc_info)
* allows compiling support for multiple processors into a single image

— extended to incorporate architectural (system ISA) differences

* interrupt enabling/disabling, co-processors, exception handling

NICTA

p— .‘\—- e
_\/ e — O‘
Single kernel image NICTA

* ARM Linux can be compiled for multiple processors

— multiple processor abstraction (proc_info)

* allows compiling support for multiple processors into a single image

— extended to incorporate architectural (system ISA) differences

* interrupt enabling/disabling, co-processors, exception handling

* Running the kernel on both A9 and M3

— per core (A9/M3) MMU mapping for proc_info struct, each core can see
its own functions

Synchronisation

e Cross-subsystem synchronisation

— locks are implemented using an atomic operation
— ARM’s exclusive monitor won’t work (LDREX, STREX)

— implement synchronisation primitives with hardware spin-locks

OMAP4430
Cortex-A9 MPU Subsystem Dual Cortex-M3 MPU Subsystem
Cortex-A9 Multicore Processor
Cortex-A9 Cortex-A9
Cortex-M3 Cortex-M3
MMU MMU
v !
L1 Cache L1 Cache
NVIC NVIC
v v . .
> GIC Snoop Control Unit
L1 Shared Cache & MMU
v v
L2 Cache L2 MMU

Y Y

L3 Interconnect

NICTA

Synchronisation NICTA

* Inter-processor interrupts
— trigger, signal completion

— no direct interrupts between A9 and M3

— OMAP’s mailbox

© NICTA 2012 from imagination to impact

Synchronisation

* Inter-processor interrupts

— trigger, signal completion

— no direct interrupts between A9 and M3

— OMAP’s mailbox

%)
Core <> Core
N Y,
X1
- A R
Core <«— Core
-),

NICTA

Synchronisation

* Inter-processor interrupts

— trigger, signal completion

— no direct interrupts between A9 and M3

— OMAP’s mailbox

(r

-

A9 Core

~N)

)

|

-

A9 Core

~

U

)

(- <)
M3 Core
N)
s I R
M3 Core
- s,

NICTA

: e ————
L ——

_M - ;__._:————

Synchronisation

* Inter-processor interrupts
— trigger, signal completion

— no direct interrupts between A9 and M3

— OMAP’s mailbox

() (N
A9 Core M3 Core
N J f A N J
I Mailbox — I
~ N L y ~ B
A9 Core M3 Core
L\) G /)

NICTA

Supporting migration NICTA

© NICTA 2012 from imagination to impact

Supporting migration NICTA

e Page-tables

— both subsystems use ARMvé6 pagetable format

— read-only mapping must be invalidated when running on the M3

© NICTA 2012 from imagination to impact

e —

\-_T
Supporting migration NICTA

e Page-tables

— both subsystems use ARMvé6 pagetable format

— read-only mapping must be invalidated when running on the M3

* Exception handling

— manipulate status registers and saved registers to consistent format

— return to the correct exception return path

Supporting migration NICTA

e Page-tables

— both subsystems use ARMvé6 pagetable format

— read-only mapping must be invalidated when running on the M3

* Exception handling

— manipulate status registers and saved registers to consistent format

— return to the correct exception return path

* Live migration

— taskset, sched_setaffinity

Interrupts NICTA

© NICTA 2012 from imagination to impact

Interrupts NICTA

* Interrupt controller

— the M3 and A9 cannot access each other’s interrupt controllers
— masking certain interrupts can only be done on certain cores

— interrupts are not easily distributed, some interrupts are not mapped to
the M3 subsystem

[) 4)

A9 M3
subsystem subsystem

_) _)
TAAAA A A A

Interrupts

Interrupts

* Interrupt controller

NICTA

— the M3 and A9 cannot access each other’s interrupt controllers

— masking certain interrupts can only be done on certain cores

— interrupts are not easily distributed, some interrupts are not mapped to

the M3 subsystem

e N -~ N
A9 M3
subsystem subsystem
- A A A A ~ E A A Aj
Interrupts 1

* This means that Linux can not completely run on the M3.

NICTA

Now, Linux runs with both the M3 and A9, and we
can migrate tasks between them!

© NICTA 2012 from imagination to impact

_\
— U'——

R —

Awesome! But what about performance? NICTA

* Investigate the overheads of our changes
e EEMBC

— embedded benchmarking suite
— wide range of workloads

e automotive
* telecommunications
* networking

e ‘consumer’

© NICTA 2012 from imagination to impact

Awesome! But what about performance? NICTA

60.0

Relative runtime for a single A9 core

54.0

48.0
42.0

36.0

30.0

24.0

18.0

12.0
6.0

e Performance is

© NICTA 2012

B AMP Linux

really bad

[l Unmodified Linux

from imagination to impact

Caches are off! NICTA

e Caches provide improved latency

CPU
(Registers)

Cache
(L1, L2)
Main Memory
(RAM)
Disk Storage
(Hard drive)

Caching on a multi-core system

e Shared caches
— high latency
— shared memory

e |Local caches
— low latency

— less cache per CPU
— cache coherency issues

e Combination

Cortex-A9 MPU Subsystem

Cortex-A9 Multicore Processor

Cortex-A9

MMU

L1 Cache

Cortex-A9

MMU

L1 Cache

v

v

> GIC Snoop Control Unit

Y

L2 Cache

v

NICTA

Cache coherency

e Sharing memory

Cortex-A9 MPU Subsystem

— out of date data

Cortex-A9 Multicore Processor

— notify other cores of changes
to data

e Cache coherency protocols

— snooping (MOESI protocol)

* requires hardware support >

Cortex-A9 Cortex-A9
MMU MMU
L1 Cache L1 Cache
v v
GIC Snoop Control Unit

A 4

L2 Cache

v

NICTA

Enabling caches NICTA

v v
NVIC NVIC

L1 Cache ‘ ‘ L1 Cache

v v
GIC Snoop Control Unit

v ¥
L1 Shared Cache & MMU
v v
L2 Cache L2 MMU

Y

Y Y

L3 Interconnect

Enabling caches

e No shared cache between the A9 and M3s

— sharing must occur at main memory

L1 Cache L1 Cache : :
NVIC NVIC
v v - ;
> GIC Snoop Control Unit
L1 Shared Cache & MMU
¥ v
L2 Cache L2 MMU

Y

Y

L3 Interconnect

NICTA

Enabling caches

e No shared cache between the A9 and M3s

— sharing must occur at main memory

NICTA

* No hardware support for cross-subsystem cache coherency

— efficient cache coherency requires hardware support (snooping)

L1 Cache

v

'

L1 Cache

v

NVIC

NVIC

v

Y

GIC Snoop Control Unit

v

v

L1 Shared Cache & MMU

Y

L2 Cache

Y

L2 MMU

Y

Y

L3 Interconnect

Enabling caches NICTA

© NICTA 2012 from imagination to impact

Enabling caches

* Big lock based coherency - introducing Linux 2.0!

© NICTA 2012 from imagination to impact

Enabling caches

* Big lock based coherency - introducing Linux 2.0!

— restrict to one CPU in the kernel (lots of waiting)

© NICTA 2012 from imagination to impact

Enabling caches

* Big lock based coherency - introducing Linux 2.0!

— restrict to one CPU in the kernel (lots of waiting)

— flush all caches on acquire/release (lots of flushing)

© NICTA 2012 from imagination to impact

Enabling caches

* Big lock based coherency - introducing Linux 2.0!

— restrict to one CPU in the kernel (lots of waiting)

— flush all caches on acquire/release (lots of flushing)

— interrupt for signalling contention

NICTA

Now we have caching!

Lets ignhore the BKL for now ;-)

© NICTA 2012 from imagination to impact

Overhead NICTA

e Compare performance of just an A9 core

* Vary what the M3 core is doing

© NICTA 2012 from imagination to impact

Overhead

e Compare performance of just an A9 core

* Vary what the M3 core is doing

Relative runtime of a single A9 core

NICTA

1.50

1.25

1.00

0.75

0.50

0.25

© NICTA 2012

from imagination to impact

Overhead NICTA

e Compare performance of just an A9 core

* Vary what the M3 core is doing

Relative runtime of a single A9 core

1.50

1.25

1.00

0.75

0.50

0.25

© NICTA 2012 from imagination to impact

_— ———— : —

S —

Overhead

e Compare performance of just an A9 core

* Vary what the M3 core is doing

Relative runtime of a single A9 core

1.50

1.25

1.00

0.75

0.50

0.25

© NICTA 2012 from imagination to impact

Overhead

e Compare performance of just an A9 core

* Vary what the M3 core is doing

Relative runtime of a single A9 core

NICTA

1.50

1.38

1.25

1.00

0.75

0.50

0.25

© NICTA 2012

from imagination to impact

Overhead

e Compare performance of just an A9 core

* Vary what the M3 core is doing

Relative runtime of a single A9 core

NICTA

1.50

1.38

1.25

1.00

0.75

0.50

0.25

© NICTA 2012

from imagination to impact

System throughput NICTA

Relative throughput

1.20
1.00
0.80
0.60
0.40
0.20

W@ OO
‘0(00\\ \““0(\(\\(\
e N&

B Best - Average B Worst

© NICTA 2012 from imagination to impact

System throughput NICTA

Relative throughput

1.20
1.00
0.80
0.60
0.40
0.20

B Best Average B Worst

* Performance is still not great

— M3 doesn’t make up for overheads

— worst case due to high LI TLB (software loaded) miss rate, as the M3
spends most of its time refilling the LI TLB, locking the A9 out of the
kernel

from imagination to impact

NICTA

Using the system

© NICTA 2012 from imagination to impact

M3 vs A9 NICTA

Relative runtime of single M3

50

45

40

35

30

25

20

15

10

@
R

© NICTA 2012 B M3 [] A9 from imagination to impact

e - i \

e —

Qe

Can the system be used in its current state? NICTA

© NICTA 2012 from imagination to impact

Can the system be used in its current state? NICTA

e Can energy-efficiency be improved by using the M3s!?

— performance overheads negate any savings

© NICTA 2012 from imagination to impact

Can the system be used in its current state?

e Can energy-efficiency be improved by using the M3s!?

— performance overheads negate any savings
* How can the system know how each core will perform!?
* How can scheduling decisions be made!?

NICTA

Modelling the performance of each core NICTA

© NICTA 2012 from imagination to impact

Modelling the performance of each core NICTA

* Run on the A9 for a short time, measure some predictors
— cache misses
— instructions executed
— branches correctly predicted
— TLB miss rate *
— etc

© NICTA 2012 from imagination to impact

Modelling the performance of each core

* Run on the A9 for a short time, measure some predictors
— cache misses
— instructions executed
— branches correctly predicted
— TLB miss rate *
— etc

* Plug these numbers into a model

Tms = alag +v%Co+ -+ vChr

NICTA

Modelling the performance of each core

* Run on the A9 for a short time, measure some predictors
— cache misses
— instructions executed
— branches correctly predicted
— TLB miss rate *
— etc

* Plug these numbers into a model
Tz = aT'ag +%C0 + - -+ +1Chn

e Decide whether it’s worth migrating...

NICTA

tf\‘ — O‘
Modelling the performance of each core NICTA

* Run on the A9 for a short time, measure some predictors
— cache misses
— instructions executed
— branches correctly predicted
— TLB miss rate *
— etc

* Plug these numbers into a model
Tms = aTa9 +7vCo + - - - + 1nChn

e Decide whether it’s worth migrating...

* Prediction is within about 10% error for a wide range of
workloads from EEMBC

Conclusion NICTA

* Linux can now schedule tasks on both A9 or M3 cores

— overheads are high mostly due to lack of hardware support

— with a bit of support from the hardware, the system should be usable
* With the right counters, performance prediction is accurate

— again, hardware support would help, either provide performance
counters on the M3s or better performance counters on the A%s.

* It only took 8500 lines to do.

— No, we haven’t pushed it upstream.

— If you're interested in the details, look out for a potential Usenix ATC
publication - fingers crossed.

Questions? NICTA

Questions? NICTA

Expected Questions NICTA

* Will we push the changes upstream?
— a lot of changes to linux for not much gain atm.
— very specific to OMAP4430, which is not very useful.

© NICTA 2012 from imagination to impact

