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                           Darbat Overview

• Para-virtualised Darwin kernel

• L4 μ-kernel hypervisor

• Isolated kernel and device drivers

• Standard virtualisation benefits
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                           Why?

• Virtualisation

• Flexibility

• Robustness

• Code size
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                           Linux Kernel Size (LoC)
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                           Mach

• Once a hot research 
topic

• Many attempts at BSD 
on Mach

• Darwin is a monolithic 
Mach kernel

• Gave microkernels a 
bad name
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                           What’s in a kernel?

• XML parser

• Decompression algorithms

• Linker

• Network routing
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• Device drivers

• Strings



                           Mac OS X Architecture
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                           Darwin

• Unique kernel design

‣ Mach 3.0 μ-kernel

‣ 4.4 BSD derivative

‣ I/O Kit device drivers

• Mac OS X applications

• Full FreeBSD 5 UNIX 
environment
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                           BSD Layer
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                           The I/O Kit
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                           BSD and I/O Kit
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                           L4

• 2nd generation u-kernel

• Learn from mistakes of Mach

• Pay attention to cache, TLB, complexity

• Make microkernels work

• 10-20x performance improvement over Mach
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                           L4 μ-kernel
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                           Darbat

• Decompose Darwin kernel

• Tackle complexity problem

• Add flexibility

• Maintain (or improve) performance

• All with binary compatibility
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                           XNU on L4

17

Mach

ISR Thread Work-loop Thread

timer

exception
int. mask

page faults
syscalls

I/O Kit



                           Server Consolidation
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• Multiple OS instances

• Kernel support

• Simplified driver model
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                           Crashable Drivers
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                           VM Aware Scheduling
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                           Reliable Servers

• Microkernel is very 
resilient

• Protect data from 3rd 
party modules

• Ensure reliable 
execution of code

• Cheaper software 
solutions
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                           Heterogeneous Systems

• L4 is OS (everything?) 
agnostic

‣ Linux

‣ *BSD

• Share devices

• Share file systems
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System Call Performance
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                           In-task Synchronisation
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                           IPC Optimisation

• L4 IPC is a subset of 
Mach IPC

• Applications rely on 
Mach semantics

• Optimisation for some 
messages
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                           Kernel Scripting
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                           Lessons So Far

• Darwin modularity

• Binary compatibility

• Mac OS X has bugs

• Performance

• Debugging
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                           Future Work?

• Further decomposition

• Improved xnu and I/O Kit bindings

• Usable system!

• Experiment with features

• System benchmarks
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                           Summary

• UNIX kernels are feature-packed

• L4 is one option to address this problem

• Extend UNIX kernel to meet modern usage

Questions?
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