

L4/Darwin: Evolving UNIX
Charles Gray

Research Engineer, National ICT Australia
charles.gray@nicta.com.au

mailto:charles.gray@nicta.com.au
mailto:charles.gray@nicta.com.au

 Outline

1. Project Overview

2. BSD on the Mach microkernel

3. Porting Darwin to the L4 microkernel

4. Project Status

2

 Darbat Overview

• Para-virtualised Darwin kernel

• L4 μ-kernel hypervisor

• Isolated kernel and device drivers

• Standard virtualisation benefits

3

 Why?

• Virtualisation

• Flexibility

• Robustness

• Code size

4

 Linux Kernel Size (LoC)

5

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

 Mach

• Once a hot research
topic

• Many attempts at BSD
on Mach

• Darwin is a monolithic
Mach kernel

• Gave microkernels a
bad name

6

Hardware

Mach
Kernel

User

Process Mgr

Network

Application Application

File System

Disk

 What’s in a kernel?

• XML parser

• Decompression algorithms

• Linker

• Network routing

7

• Device drivers

• Strings

 Mac OS X Architecture

8

Hardware

Kernel
User

launchd Aqua GUI

xnu

UNIX App

OS X App
Darwin

 Darwin

• Unique kernel design

‣ Mach 3.0 μ-kernel

‣ 4.4 BSD derivative

‣ I/O Kit device drivers

• Mac OS X applications

• Full FreeBSD 5 UNIX
environment

9

Hardware

 Mach

Kernel

User

UNIX App OS X App

I/O Kit

BSD

 BSD Layer

10

Kernel

User

Mach I/O Kit

BSD

Threads Process

VM

UBC

fork() mmap() listen()

UFS
HFS+ TCP

interrupt

Scheduler

PCI Bus

Disk Network

 The I/O Kit

11

Kernel

User

Mach I/O Kit

BSD

mach_msg()

interrupt
PCI Bus

ATA NIC

paging

Disk0 Disk1

Partition0 Partition1

UHCI

Keyboard

User
Client

HFS+

 BSD and I/O Kit

12

Kernel

User

I/O Kit

BSD

ioctl()

ATA

Disk0 Disk1

Partition0 Partition1

HFS+

bdevsw

SCSI

read()

 L4

• 2nd generation u-kernel

• Learn from mistakes of Mach

• Pay attention to cache, TLB, complexity

• Make microkernels work

• 10-20x performance improvement over Mach

13

 L4 μ-kernel

14

Hardware

L4

Kernel

User
OS Kernel ApplicationApplicationApplication

★not to scale

interrupt page-fault / exception

Threads Address Spaces

IPC

Scheduler

 Darbat

• Decompose Darwin kernel

• Tackle complexity problem

• Add flexibility

• Maintain (or improve) performance

• All with binary compatibility

15

 Mach

Drv. Stub

BSD

xnuglue
I/O Kit

BSD stub

Darbat Model

16

UNIX App OS X App

Hardware

L4
Kernel

User

 Mach

Drv. Stub

BSD

xnuglue
I/O Kit

BSD stub

timer interrupt

 XNU on L4

17

Mach

ISR Thread Work-loop Thread

timer

exception
int. mask

page faults
syscalls

I/O Kit

 Server Consolidation

18

• Multiple OS instances

• Kernel support

• Simplified driver model

Hardware

L4
Kernel

User

I/O Kit

xnu xnu

 Crashable Drivers

19

Hardware

L4
Kernel

User

• Drivers crash

‣ Holding locks

‣ Hogging resources

• Can isolate drivers

‣ and keep performance

• Some devices still
critical

Disk Stack
Network

Stack

xnu

 VM Aware Scheduling

20

Hardware

L4
Kernel

User

xnu xnu xnu

Application

Application
Application Application

Application

pr
io

ri
ty

 Reliable Servers

• Microkernel is very
resilient

• Protect data from 3rd
party modules

• Ensure reliable
execution of code

• Cheaper software
solutions

21

Hardware

L4
Kernel

User

I/O Kit

xnu

Watchdog

Key Mgr.

 Heterogeneous Systems

• L4 is OS (everything?)
agnostic

‣ Linux

‣ *BSD

• Share devices

• Share file systems

22

Hardware

L4
Kernel

User

I/O Kit

xnu

Wombat
Linux

23

System Call Performance

Hardware

L4
Kernel

User

xnu

UNIX App

mach_msg null operation

~2400 cycles

Hardware

Kernel

User

xnu

UNIX App

~2500 cycles

Mac OS X 10.4.7 Darbat 0.2

 In-task Synchronisation

24

Hardware

L4
Kernel

User

pthreads synchronisation

~6,500 cycles

Hardware

Kernel

User

xnu

UNIX App

~17,000 cycles

Mac OS X 10.4.7 Darbat

UNIX App

 IPC Optimisation

• L4 IPC is a subset of
Mach IPC

• Applications rely on
Mach semantics

• Optimisation for some
messages

25

Hardware

L4
Kernel

User

xnu

OS X
App

OS X
App

 Kernel Scripting

26

Hardware

L4
Kernel

User

I/O Kit

xnu

Python

• Sometimes you just
need a hack

• In-kernel scripts get
messy

• Scheduling and locks
are a pain

• Don’t compromise the
whole system

 Lessons So Far

• Darwin modularity

• Binary compatibility

• Mac OS X has bugs

• Performance

• Debugging

27

 Future Work?

• Further decomposition

• Improved xnu and I/O Kit bindings

• Usable system!

• Experiment with features

• System benchmarks

28

 Summary

• UNIX kernels are feature-packed

• L4 is one option to address this problem

• Extend UNIX kernel to meet modern usage

Questions?

29

