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Abstract
Device driver bugs are the leading cause of operating-system
exploits, and the lack of accurate specifications of device in-
terfaces is a leading cause of driver bugs. We propose to
address the specification issue by deriving formal specifi-
cations of devices from their Verilog implementation, and
prove the correctness of the specification against the imple-
mentation. We demonstrate this approach by applying it to
an open-source I2C controller. These specifications should
enable synthesis or verification of drivers in the future.

CCS Concepts: • Software and its engineering → Op-
erating systems; Formal software verification; Formal
methods; • Hardware → Theorem proving and SAT solving.

Keywords: Device model, device driver verification, HOL4
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1 Introduction
Bugs in device drivers are the major source of OS vulnerabil-
ities, accounting for the majority of the 1,057 CVEs reported
for Linux in the period 2018–22 [Pohjola et al. 2023] – correct
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drivers are therefore critical to the secure and safe operation
of any computing system.
Driver bugs could be largely eliminated by synthesising

drivers from formal specification of the hardware and OS
interfaces [Ryzhyk et al. 2009b], or by formally verifying
hand-written drivers [Pohjola et al. 2023]; such verification
is our ultimate aim. However, synthesis or verification of
drivers on its own is insufficient: A study by Ryzhyk et al.
[2009a] showed that the dominant cause of Linux driver bugs
(38%) are device-protocol violations, i.e. the driver interfacing
with the device incorrectly, typically the result of incorrect
or mis-understood specifications of the device interface.

The remaining faults distribute roughly equally between
software-protocol (i.e. OS interface) violations, concurrency
faults and “generic faults” (coding errors). Based on this evi-
dence, Ryzhyk et al. [2009a] propose an active driver model,
where each device driver is a single-threaded, event-driven
process, communicating with the rest of the OS via well-
defined interfaces; such a approach eliminates most of the
software-protocol and concurrency bugs (which together
account for 39% of bugs). While their proposed Dingo driver
framework failed to get traction in the Linux community,
the seL4 community has recently introduced a device driver
model that follows the Dingo approach, resulting in simple
drivers for seL4 that outperform Linux [Heiser et al. 2024].
While there is currently no quantitative data on the cor-

rectness benefits of the active driver model, it is highly intu-
itive that its adoption will reduce the incidence of the classes
of bugs it targets, resulting in device-protocol violations becom-
ing the even more dominant source of driver bugs. The Dingo
study further states that major sources of these bugs are
poorly documented device behaviour, and the device deviating
from hardware interface standards or otherwise documented
behaviour (incl. hardware bugs).
Clearly, precise and correct specification of device inter-

faces are a prerequisite for eliminating these device-protocol
violations. We propose to not only formally specifying device
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interfaces, but also verifying this specification against the de-
vice implementation. Our long-term aim, outside of the scope
of this paper, is to formally verify the device driver. However,
even without full-scale formal verification, high-fidelity for-
mal specification of the device will enable the construction
of better drivers, be it manually or by synthesis.

The contributions of this work are:
1. a framework for deriving validated formal device spec-

ifications in the HOL4 theorem prover from Verilog
implementations, consisting of:
a. a general workflow for proving that the Verilog im-

plementation of a device refines a higher order logic
(HOL) specification (Section 3.1);

b. a framework for defining the HOL specifications
from Verilog implementations (Section 3.4);

2. application of the framework to a pre-existing, open-
source I2C controller (Section 4).

Specifically, we present the high-level device specifica-
tions as parametrised HOL functions that capture the basic
structures of the devices, where the parameters are then
instantiated with the details specific to each device.

We also produce a HOL representation of the Verilog im-
plementation of a device, either from the original Verilog
design, or a manually derived simplification of the Verilog.
We then present the proof of equivalence between the

HOL specification and the HOL representation of Verilog.
We furthermore show how to prove the behavioural equiva-
lence (i.e., equivalence of the device interface and hardware-
software interaction protocol) between this Verilog repre-
sentation in HOL4 and the original Verilog design, which
thus establishes that the Verilog refines the specification.

We present formalisation of a real-world I2C controller, for
which the above proof is completed for the address-decoding
logic part, from the specification down to the original Verilog.

2 Tools and Device Implementations Used
2.1 Verilog Syntax and Semantics in HOL4
We use the theorem prover HOL4 [Slind and Norrish 2008] as
the basic tool for formalisation and verification. The defini-
tional framework of HOL4 is higher order logic (HOL), which
is essentially a functional programming language. We use
two kinds of Verilog representations on HOL4: one is shal-
lowly embedded Verilog, meaning that Verilog functionality
is represented semantically and directly as HOL4 functions,
and the other is deeply embedded Verilog, which is defined
as a datatype in HOL4 representing Verilog syntax trees.

Lööw and Myreen [2019] presents deeply embedded Ver-
ilog and its semantics in HOL4 [Lööw 2018]. It also pro-
vides a verified synthesis tool (down to netlists) and a proof-
producing Verilog code generator. We use this definition of
deeply embedded Verilog in our formalisation. We also use
the Verilog code generator as a “translator” from shallowly
embedded Verilog to a deeply embedded version, which we

then can export as Verilog files. The proof produced by this
translation process guarantees that the properties established
on the HOL4 specification hold for the Verilog design ob-
tained as the result of translation. We do not plan to use
the synthesis tool because our workflow presumes the pres-
ence of an existing hardware design. We will refer to the
proof-producing translator and the Verilog semantics from
this work simply as the (Verilog) translator and the Verilog
semantics in the rest of the paper.

2.2 Target Platform
We target the OpenTitan Foundation’s secure peripherals,
specifically a fork [OpenTitan Developers 2021] of their I2C
created by the PULP group for use in the Cheshire open-
source RISC-V SoC [Ottaviano et al. 2023].

3 Specification Framework
The general workflow we discuss in Section 3.1 is, in princi-
ple, applicable to generic Verilog designs. For designs by the
PULP project, we present some general structures that pro-
vide guidance in defining HOL specifications (Section 3.4).

3.1 General Workflow
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Figure 1. Device interface formalisation.

Figure 1 shows the workflow. The HOL functions box rep-
resents the formal specification, against which we could im-
plement (and eventually verify) device drivers. The bottom
box is the Cheshire design in SystemVerilog. The refinement
between the HOL specification and the original Verilog is
established using HOL representations of Verilog, which
serves as an intermediate representation. We use two dif-
ferent HOL representations of Verilog: shallowly embedded
and deeply embedded (the second and third from the bottom;
see Section 2.1 for definitions).

It may be necessary tomanually translate the target design
into a simplified version of Verilog, which only uses features
that are supported by the current Verilog semantics, e.g., no
submodules (on the left).



The HOL functions (“the spec”) are manually defined
based on the template structures and the (Cheshire) device-
specific information. We then show in three steps that the
spec behaves like the original target Verilog:

1. We show, by manual proofs in HOL4, the equivalence
of behaviours between the spec and the shallowly em-
bedded version of Verilog, which is obtained by manu-
ally or automatically translating the target Verilog (or
simplified Verilog).

2. We use the Verilog translator [Lööw and Myreen 2019]
to generate deeply embedded Verilog. It also produces
the proof of the correctness of this translation, estab-
lishing that the two versions of Verilog are equivalent.

3. We export the deeply embedded Verilog as a Verilog
file, and use any of the standard formal verification ap-
proaches used for hardware (e.g., equivalence checkers
such as Yosys EQY [Yosys Developers 2020]) to show
its equivalence or refinement to the target Verilog.

3.2 Top-level Specification
Typical synchronous circuits consist of two parts: storage
elements (flip-flops and SRAM), whose values are updated on
every rising clock edge, and combinational logic (ordinary
logic gates), which determines what those storage elements’
values should be changed to. The values of storage elements
are referred to as synchronous signals, and intermediate
values within the combinational logic are referred to as com-
binational signals.
Such circuits can naturally be modelled with a “state”

datatype s, representing all the synchronous signals, and
a function f : s → s on states that models the changes made
to those signals by the combinational logic each clock cycle.

However, this as is does not take into account the effects
of external inputs on the circuit or expose the outputs from
the circuit. Therefore, for inputs which are controlled by
the device driver (i.e. memory-mapped I/O requests), we
add an additional argument to f representing the values of
these inputs. We model the circuit’s remaining inputs as
nondeterminism by adding an extra field to the state that
carries an infinite stream of numbers fnums, which f can use
to emulate non-deterministic values. This encodes a set of
possible new states, based on the set of all results produced by
different values of fnums. We represent outputs by extending
the return value of fwith an additional value. Combinational
signals are represented as intermediate values private to f.
We realise the resulting function f : s → i → (s, o)

as the top-level specification cheshire_run, which is
parametrised by three functions tick, read, and write that
specify the device-specific behaviour:

cheshire_run tick read write:
state -> req option list ->

ffi_outcome + state # word32 option list

This accepts the initial state of the circuit and a list of
requests to issue on each clock cycle (or NONE if no request
should be performed), and returns one possible state of
the circuit after executing it with those requests (note that
cheshire_run executes as many cycles as the length of the
requests list and returns an output list of the same length).

3.3 Cheshire Peripherals
Cheshire peripherals are split into two components: their
address-decoding logic/register storage (the *_reg_top sub-
module), and their core logic (the *_core submodule). The
address-decoding logic is auto-generated from a HJSON
file that lists the peripheral’s memory-mapped I/O registers
along with the metadata of whether software and/or hard-
ware is allowed to read from/write to each of the registers.
The core logic communicates with the bus entirely through
the interface provided by the address-decoding logic.

i2c_reg_top

<reg>.q
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INTR_STATE.q

Latched interrupts
(retrieved from
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<reg>.qe

<reg>.re

<reg>.d

<reg>.de

interrupts

Regbus

i2c_core

Figure 2. Cheshire I2C architecture.

As an example, Figure 2 shows this structure for the I2C
device, but this overall structure is shared among different
Cheshire devices: in *_core, the d and de signals are used
by the core logic to set registers, and the q signal exposes
their current values. In addition, the qe and re signals are
asserted whenever software writes to or reads from a register
respectively, allowing for actions to be reliably triggered by
register reads or writes.
There are two kinds of registers: normal ones, which are

stored by *_reg_top, and hwext ones, which are stored
by *_core. Everything to do with hwext registers happens
one cycle sooner than for normal registers, since *_core is
directly responsible for servicing reads/writes rather than
being notified after the fact.

3.4 Specification Parameters
.

The tick, read and write functions define the behaviour
of a peripheral. The tick function defines the behaviour of
the core logic. This accepts a user-defined state record and
a notification representing qe/re for hwext registers, and
returns the new state of the hardware after one clock cycle.



periph_state = <|
fnums: num -> num;
regs: periph_regs;
fifo: word8 list;
buffered_notif: periph_notif option;
count: word32;

|>;

periph_tick (hwext_notif: periph_hwext_notif option)
(st: periph_state) =

let
(* q (non-hwext) *)
count' = st.count + st.regs.step.step;
(* qe (non-hwext) *)
count'' = if st.buffered_notif = SOME step_write

then 0w else count';
(* d/de (non-hwext) *)
regs' := st.regs with

my_reg := st.regs.my_reg with my_field := fnums 0;

fifo' = case hwext_notif of
(* q / qe (hwext) *)
SOME (Write (fifo_write value))

=> st.fifo ++ [value.fifo]
(* re (hwext) *)

| SOME (Read fifo_read) => TL st.fifo
| NONE => st.fifo

fnums' := \n. st.fnums (n + 1);
in

<|
fnums := fnums';
regs := regs';
fifo := fifo';
buffered_notif := NONE;
count := count'';

|>

(* d (hwext) *)
periph_get_fifo_fifo (st: periph_state) = HD st.fifo

Figure 3. A sample model of a peripheral’s core logic.

For non-hwext registers, because qe/re are asserted a cycle
after the read/write occurs, the notifications are saved into
buffered_notif to delay them for a cycle, too. Figure 3
provides an example of these mechanisms in use.
We also need a getter function for each readable hwext

field, which determines the value to be read by software,
corresponding to d. We then generate from the peripheral’s
memory map a read and a write function, the model of the
address-decoding logic. Figure 4 and Figure 5 show snippets
of these functions generated for the I2C device.

read takes the state of the system, the number of bytes
and the address to read, and returns an optional notification
that a hwext register has been read (corresponding to re)
along with the read value. For hwext registers, it calls the
getter functions (in the core logic) to determine their values.

write takes the same arguments as read plus the data
to be written, and returns st_upd, a function to be applied
after the rest of the clock cycle’s logic has run, and another

i2c_read (st: i2c_state) (nb: num) (offset: num) =
case offset of

0x0 =>
INR (NONE, (w2w st.regs.intr_state.fmt_threshold

<<~ 0w) || (* ... *): word32)
| 0x4 =>

INR (NONE, (w2w st.regs.intr_enable.fmt_threshold
<<~ 0w) || (* ... *): word32)

| 0x8 => INR (NONE, 0w: word32)
(* ... *)
| 0x14 => INR (NONE, (w2w (i2c_get_status_fmtfull st)

<<~ 0w) || (* ... *): word32)
| 0x18 => INR (SOME (Read rdata_read),

(w2w (i2c_get_rdata_rdata st)
<<~ 0w): word32)

(* ... *)
| _ => INL FFI_failed

Figure 4. Snippets of the generated i2c_read function.

optional notification corresponding to qe. However, this no-
tification is only returned for hwext registers: for regular
registers, it needs to be delayed by a clock cycle, which is ac-
complished by saving the notification in buffered_notif.

st_upd is necessary to avoid a race condition: in hard-
ware, the address-decoding and core logic are running
in parallel, and are operating on the values of regs and
buffered_notif set by the previous clock cycle. But if tick
and write updated the state they read from, the only way
to apply both their updates to a state would be to give one
function the result of the other, causing it to observe changes
that should not have been applied until the next clock cycle.
st_upd decouples the state that changes are applied to from
the one which determines the changes to apply.1
Some of the patterns of this framework are robust

enough to auto-generate the HOL spec, particularly for the
*_reg_top part. For the *_core part, the user needs to pro-
vide the device logic in the *_tick function. Figure 3 shows
the basic pattern for this, outlining how different structures
correspond to interacting with *_reg_top’s interface.

The user also needs to add whatever of the peripheral’s ab-
stract state required to model to the state record. They can
then fill in the getter functions *_get_* with appropriate
logic as needed for determining those registers’ values.

4 Formal Specification of I2C
We now apply the framework to OpenTitan’s I2C device used
by Cheshire, and discuss the process of showing equivalence
between the representations of Figure 1.

4.1 The Device
An I2C device [NXP 2021] is a synchronous serial bus widely
used in most contemporary computers and embedded sys-
tems, especially in common derivatives like SMBus. It uses
1Another option would have been to add an extra st’ parameter to write,
but that would not allow the notification to be passed to tick without
having to know the result of tick first.



i2c_write (st:i2c_state) (nb:num) (off:num) (w:word32) =
case off of

0x0 =>
let

st_upd = \st'. st' with <|
regs := st'.regs with

intr_state := st'.regs.intr_state with <|
fmt_threshold :=

st'.regs.intr_state.fmt_threshold
&& ~((0 >< 0) w);

rx_threshold :=
st'.regs.intr_state.rx_threshold
&& ~((1 >< 1) w);

(* ... *) |>;|>;
in

if nb >= 2 then INR (st_upd, NONE)
else INL FFI_failed

(* ... *)
| 0x1c =>

let
st_upd = \st'. st' with <|
regs := st'.regs with fdata := st'.regs.fdata with

<| fbyte := (7 >< 0) w;
start := (8 >< 8) w;
(* ... *) |>;

buffered_notif := SOME fdata_write; |>;
in

if nb >= 2 then INR (st_upd, NONE)
else INL FFI_failed

(* ... *)
| _ => INL FFI_failed

Figure 5. Snippets of the generated i2c_write function.

addressing: in our configuration, there are 7 address bits tar-
geting up to 127 devices, with address 0 indicating broadcast.
Usually there is one controller and many target devices, each
with a unique address. We use I2C in the controller mode as
appropriate for the CPU.

I2C uses two signal wires: SDA (serial data) and SCL (serial
clock), see Figure 2. One bit is transmitted via SDA for every
SCL cycle. The controller generates the clock and emits the
addresses; targets are passive until addressed and clocked.

4.2 Spec and Shallow Embedding
In this section, we explain the process we used for generat-
ing the I2C device specification, as HOL functions, and the
shallow embedding of the Verilog design, for each of the two
components of I2C, namely i2c_reg_top and i2c_core.
For the i2c_reg_top submodule, which is the address-

decoding logic part, we use Python scripts to read the HJ-
SON file that describes the device’s memory map and auto-
generate both the spec and the shallow embedding, along
with some necessary information. Specifically, the scripts
generate the following:

• A record type for storing the non-hwext registers.
• i2c_read and i2c_write, which take in memory-
mapped I/O requests and return:

– A “notification“ about the request which should be
passed to i2c_tick, if needed (including requests
for it to service hwext writes)

– If this is a write, modifications that should be made
to the state as a result; and

– If this is a read, the value that was read (hwext reads
are implemented by calling into user-written getter
functions).

• A shallowly embedded Verilog version of
i2c_reg_top, as well as the datatypes it uses
to communicate with the shallowly embedded version
of i2c_core.

Note that the last item is for shallow embedding, while the
rest are part of the spec. These are put together with the
corresponding parts for i2c_core to represent the top-level
functionality of the device as the spec and the shallow em-
bedding of the device design, respectively.
For i2c_core, the process is more manual. To model

i2c_core as i2c_tick function (Figure 3), we study the
simplified version of Verilog design and rewrite it as HOL4
expressions, leveraging HOL mechanisms such as datatype
definitions and pattern matching. This means that FIFOs are
represented as inductive lists with auxiliary functions to de-
termine their statuses (empty, full, or in between), taking care
to ensure that any function applied to the lists does not break
the length invariant. External world is left underspecified
via the non-deterministic function fnums.

For example, the SCL and SDA signals are written as
scl_i = n2w $ fnums 0 and sda_i = n2w $ fnums 1,
where n2w is the HOL4 function to convert naturals to ma-
chine words. Internal registers appear in the model as fields
of the record i2c_state whose types are machine words
with suitable length.

We similarly obtain the shallowly embedded version of
Verilog for i2c_core by defining functions inHOL4 butwith
more concrete representations and as a more direct mapping
of Verilog designs. Unlike the specification, shallowly em-
bedded Verilog is split into many functions describing small
pieces of the circuit, corresponding to Verilog processes. Each
process is either combinational or synchronous, and sets the
corresponding kind of signal (as described in Section 3.2).
With the combinational logic spread across multiple func-
tions, its internal signals can no longer be kept private to one
function; therefore, combinational signals must be included
in the state. The circuit’s outputs are also included in the
state, and may be either combinational or synchronous.
On each clock cycle, all of the synchronous processes

are run in one phase, followed by all of the combinational
processes in another phase. Each of these processes is repre-
sented as a HOL function with three record-type arguments,
which represent the current values of input signals (input i
to the state-transition function f), the circuit’s state at the



start of this phase (s) and the not-yet-complete value of the
circuit’s state at the end of each phase (s, o).

The body of each function describes the behaviour of the
intended circuit by updating the fields of the third record
accordingly, using HOL operations that more or less corre-
spond to those of (System)Verilog. Together with an expres-
sion of the initial value of each signals, they constitute the
top-level of a shallowly embedded Verilog circuit in HOL4.
Unlike the spec, where we can simply use lists to repre-

sents FIFOs, we need to implement FIFOs concretely for the
shallow embedding. This amounts to recreating the FIFOs
faithfully to the OpenTitan designs as described above. Shal-
lowly embedded Verilog circuits in HOL4 also do not have
the luxury of datatype mechanisms, meaning that the states
in finite state machines need to be encoded explicitly, i.e.,
assigning 0b01 for Active, 0b11 for ReadClockPulse, etc.

4.3 Translation of Shallow Embedding
For each of i2c_reg_top and i2c_core, once the setup in
Section 4.2 for the shallow embedding is done, we can use
the proof-producing Verilog translator [Lööw and Myreen
2019] to generate the deeply embedded Verilog together
with the proof that the i2c_reg_top + i2c_core circuits
in both embeddings behave equivalently. Once the deeply
embedded Verilog is available, we can use the pretty-printer
[Lööw and Myreen 2019] to generate readable Verilog code
and export it for further formal verification treatment with
hardware model checkers. The translation took 63 minutes
on a machine with an 8-Core AMD processor (2 threads per
core) with 64GB of RAM.

4.4 Proof of Equivalence
For the i2c_reg_top submodule, we have completed all the
three steps of Section 3.1, resulting in a proof of behavioural
equivalence between the spec and the original Verilog design.
Here, we discuss the first step, the manual proofs in HOL4
between the spec and the shallow embedding.

Because i2c_reg_top’s job is to interact with the outside
world, verifying it just amounts to proving I2C’s top-level
correctness theorem, with the correctness of i2c_core as an
assumption. The statement of this top-level theorem without
the said assumption is shown in Figure 6.
It says that, given an initial state st and a sequence of

optional memory-mapped I/O requests reqs (one per clock
cycle), if the initial states of the model and shallowly embed-
ded Verilog are equivalent, and all the requests made to the
model and the Verilog are equivalent and valid, then there
exists some fnums that can be passed to the model such that
after running it and the Verilog with reqs, their states and
all the values that they return to software will be equivalent.

This amounts to say that, if the shallowly embedded Ver-
ilog version of i2c_core behaves the same as i2c_tick, the
i2c_reg_top model behaves the same as the whole of i2c
(which is a thin wrapper around i2c_core + i2c_reg_top).

i2c_state_rel st (i2c fext fbits 0)
/\ (!i. i < LENGTH reqs ==>

let
req = reg_req_decode (fext i).reg_req_i: 7 reg_req;

in
~i2c_req_error req
/\ cheshire_req_rel (EL i reqs) req) ==>

?fnums. let
(st', rdatas) =
OUTR (cheshire_run i2c_tick i2c_read i2c_write

(st with fnums := fnums) reqs)
in
i2c_state_rel st' (i2c fext fbits (LENGTH reqs))
/\ (!i. i < LENGTH reqs ==>

let
rsp = reg_rsp_decode (i2c fext fbits i).reg_rsp_o;

in
rsp.ready /\ ~rsp.error /\
(!value. EL i rdatas = SOME value

==> rsp.rdata = value))

Figure 6. The correctness theorem for Cheshire I2C’s shal-
lowly embedded Verilog.

Because the address-decoding logic is auto-generated in
the same fashion for all of Cheshire’s peripherals, we should
be able to verify it for one peripheral and reuse that proof
for the rest of them with minimal modifications.

5 Discussion
5.1 Status
We now have a complete formal specification and shal-
low embedding of the Cheshire I2C controller. For the
i2c_reg_top submodule, we have a complete proof of be-
havioural equivalence down to the original Verilog (RTL
level design); Figure 6 shows the theorem. The proof for
the i2c_core part is in progress. We are also working on a
HOL4 tool to help establishing refinement between simpli-
fied Verilog and the original Verilog.

We are also working on repeating the process for a second
device class, Cheshire’s SPI controller. Generation of the spec
and shallow embedding progressed as for I2C, except that
the Python scripts to handle the HJSON file needed to be
extended to support window registers. This provides some
confidence that the approach generalises over a large set of
device classes.
We emphasise that our targets are not toy examples but

real-world devices of reasonable complexity. For reference,
we list the numbers of lines of the Verilog designs that we use,
the device drivers written in C, and the HOL specifications
for both I2C and SPI devices in Table 1. Just to put things in
perspective, we also add numbers for an Ethernet controller.
(Note, however, the design and the driver are unrelated in
the case of the Ethernet controller; the Verilog code is from
the PULP project [PULP Developers 2023], while the driver
is for the Amlogic Meson SoC’s Ethernet peripheral.)



Verilog Driver HOL spec
I2C 5993 713 1414
SPI 4609 864 1235

Ethernet 3987 641 N/A

Table 1. Lines of code comparisons between I2C, SPI, and
Ethernet devices

5.2 Future work
We expect the specification structures to cover any periph-
erals used by the PULP project. Our next aim is to formalise
an open-source Ethernet controller from a different source,
which will likely require some extension of the framework.

For usability and productivity we hope to reduce the man-
ual process steps required. The Verilog translator works
in the opposite direction of what is ideal for our purpose:
we would prefer an automated tool that generates shallow
embedding from deep embedding, i.e. a decompiler. Also, ex-
tending the Verilog semantics to support submodules will
reduce the need to prepare a simplified version of Verilog.
Irrespective, the availability of formal, verified hardware

specifications opens the exciting prospect of not only reduc-
ing faults in device drivers, but completely eliminating them
by formally verifying drivers against the spec. This long-
term goal is aided by the structural simplification of sDDF
drivers [Heiser et al. 2024] (compared to Linux drivers).

We hope to implement device drivers based on the formal
specification we report here. At the time of writing, we al-
ready have an I2C device driver implemented in C, based on
the OpenTitan Verilog implementation. Our immediate plan
is to assess this implementation against the formalisation we
present here to see if we find any discrepancies or possible
improvements, potentially in both ways. We aim to do the
same for the SPI driver as well.

Our formalisation also paves the way to formally verifying
properties of the hardware peripheral, not only in isolation,
but also in conjunction with its driver. These could include
safety properties (e.g. bus-level correctness and bit-framing
including clock stretching), liveness properties (including
worst case response times and deadlock checks), and inter-
face properties (including register memory mapping, mem-
ory read/write protection, and interrupt sequencing).

6 Related work
Attempts to formalise and verify hardware interfaces go back
to Bevier et al. [1989] who verified a simple processor against
its ISA, with an assembler and compiler; I/Owas not included
in their formalisation. The Verisoft project verified a proces-
sor and a simple microkernel [Alkassar et al. 2008]. Verisoft
verified some drivers, although against abstract models not
connected to the hardware implementation.

Termite synthesised device drivers from (manually de-
rived) formal specifications of the OS and hardware inter-
faces [Ryzhyk et al. 2009b, 2014]. While scaling to the com-
plexity of Ethernet drivers, Termite could not handle direct
memory access (DMA) by the device.
Lööw et al. [2019] pioneered verifying hardware specs

against the Verilog description of hardware. While they veri-
fied execution of (bare-metal) code, they did not model I/O.

Erbsen et al. [2021] verified a (bare-metal) stack with real-
istic I/O down to the hardware for the first time. However,
they did not perform any modelling or verification of the
peripherals connected to the memory-mapped I/O bus.
Athalye et al. [2022] created a hardware/software verifi-

cation framework aimed at proving the absence of timing
channels, which verifies in one go with an SMT-solver-based
tool that the entire system, firmware included, functions cor-
rectly. This means that any change to the software requires
the whole system to be verified again. In follow-up work
[Athalye et al. 2024] they improve the scalability by verifying
the software separately.
All of the above work has in common that it is based on

simplified hardware and software. In most cases, all software
must be trusted to gain an overall verification story. Our aim
is to produce dependable (and performant) device drivers for
verified real-world devices for a system running untrusted
code (isolated by the OS).

7 Conclusions
We presented a framework for formally specifying periph-
eral devices as HOL functions and demonstrated its use in
formalising an open-source I2C controller from its Verilog
implementation and verifying the spec against the Verilog.
Using the same workflow we have generated a specification
for an SPI controller, with verification partially completed,
indicating that the approach works across device classes.
Such formal specifications address the leading cause of

device driver bugs, device protocol violations, and should
thus lead to better (manually-written or synthesised) drivers.
More importantly, they are a core requirement for meaning-
ful formal verification of the device drivers – the only way
to completely remove driver bugs.

Availability
The tools and artefacts from this work are available un-
der open-source licenses from https://trustworthy.systems/
software/device-spec/.
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