Deadline spanning: A graph based approach

Stefan M. Petters

Embedded, Real-Time, and
Operating Systems Program
National ICT Australia Ltd.*

School for Computer Science and
Engineering
University of New South Wales

Sydney, Australia

smp @nicta.com.au

Abstract

Microkernel based systems tend to depend heavily on IPC.
This paper adresses the problem of a system response span-
ning more than one task in an embedded real-time system.
The approach is based on a mix of classical response time
analysis equations and a graph based approach to estimate
the impact of different parts of the system on the time needed
by the system to respond. This approach has the major ad-
vantage of being intuitive.

1 Introduction

In real-time system the response to a trigger is considered
to be associated with a deadline, by which the response has
to be completed for a correct operation of the embedded sys-
tem. Such a deadline usually spans a set of processes. We
will uniformly use the term task for these processes, without
excluding threads. Splitting the deadline for an activity into
deadlines for individual task increases the constraints in the
schedulability analysis and hence potentially increases pes-
simism of the analysis. In this paper we consider this in the
context of a microkernel-based environment and more speci-
ficly the Pistachio [6] implementation of the L4 API.

The L4 kernel based on the initial work of Liedtke and
others [4] exhibits excellent performance while retaining all
the main benefits associated with a microkernel. These are
the small size, taylorability to specific needs, analysability in
terms of functional and temporal behaviour [2], and minimis-
ing the scope of deliberate attacks on or critical errors within
the system. Because of their structure, systems developed for
a microkernel architecture are usually heavily inter-process
communication (IPC) dependent, adding to the observation
above of deadlines spanning multiple tasks.

This raises the issue of what the critical instant is. Due
to the IPC dependent structure of the system, the critical in-
stant is different to the classical interpretation of the release
of all tasks at the same time. The response time of an in-
dividual task becomes of at least secondary relevance. The
prime concern is the response time of the activity, which is

*National ICT Australia is funded through the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian Re-
search Council.

only loosly related to that of a single task of the activity. The
activity can be seen as a logical thread of control through
the system. The temporal dependencies between tasks also
provide a means to reduce the impact of blocking to be con-
sidered when looking at response times under the assumption
that critical sections are encapsulated in server tasks.

2 Related Work

The closest work to what we present in this paper is that
of Tindell [8]. The major drawback of Tindell’s approach is
the individual analysis of all tasks, which results in bad scal-
ability of the analysis. Furthermore the assumption of fixed
offsets used to compute worst case response times becomes
impractical in the the context of a probabilitic approach.

Kolloch has shown a graph based approach in [5]. In his
work he mapped a specification in SDL to a communicating
task system. The messages in this system would transport the
end-to-end deadline of an activity. These transported dead-
lines were then used to drive the earliest-deadline-first sched-
uler. Despite its advantage of having a uniform priority for
all tasks within one system response, the implementation of
the EDF scheduler adds significant overhead. A two level
approach was described by Feng and Liu in [3]. There tasks
are divided into mandatory and non-mandatory tasks. The
non-mandatory tasks are used to improve on the results of
the mandatory tasks. In that respect no hard real time re-
quirements are placed onto the non-mandatory tasks.

3 Graph Based Response Time Analysis
3.1 L4 Pistachio Kernel

Pistachio is an high performance implementation of the
L4 microkernel API. It slightly deviates from microkernel
idea of providing mechanisms, but not policies. Pistachio
implements a flexible scheduling policy, which is partially
mirrored and implemented in the IPC path. The baseline is a
priority-based round-robin mechanism. The scheduler would
pick the tasks with the highest priority and execute those for
time slices based on round robin. However, overlaid is a
mechanism to work effectively in the presence of heavy IPC,
which is typical for microkernel-based systems. Communi-
cation between tasks is considered to be synchronous only.
This has been chosen for Pistachio as it removes a lot of over-
head in maintaining message queues. Multiple IPC requests

are sorted in FIFO order. Despite being considered inferior
to a priority based ordering, we argue that the potential addi-
tional blocking time justifies the performance gain achieved
by the simple ordering. A form of priority ceiling proto-
col is implemented by encapsulating critical sections inside
a server task opposed to using a semaphore with the associ-
ated overhead of implementing the priority ceiling protocol
in the kernel. The server task is assigned the same priority
as the highest priority task calling this server task. A side
effect of this implementation of priority ceiling is the fact
that in the case of multiple tasks waiting to enter the critical
sections lead to the server task serving all requests, before
yielding to the task with the highest priority of those served.

For a real-time application the use of explicit time slice
donation and semaphores has to be ruled out. However, since
the atomic operation can be provided using server tasks, this
seems to be a minor restriction.

3.2 Activities

Activities are in general described as system response to a
system trigger and involves the execution of the ISR, a set of
tasks, some of which might be optional or alternative (either
one or another subset) and a set of operating system calls. If
an interrupt service routine (ISR), a task, or an OS system
call is part of more than one activity, we will use copies of
the instances in our analysis model.

Any activity A; performed by the system is considered to
happen with a minimum inter-arrival time 7; and subject to
adeadline D;. Besides this, an activity A is associated with
an worst case execution time (WCET) C; and a base priority
p;. The base priority of an activity is defined as the lowest
priority of any task of this activity. From an analysis point
of view it makes little difference whether system calls or ISR
are tasks with high priorities or OS services.

3.3 Taskmodel

Each task communication has to be distinguished between
the following types. If the communication between two tasks
is paired, i.e. one task sends an IPC to the other and receives
a response, we consider this IPC sequence to be a call. A
task may do multiple calls, some of which might be mutually
exclusive. System calls are considered in similar fashion to
calls to other tasks. Another case is a split in the control
flow, which means a task sends an IPC to another task and
thus produces fine-grained concurrency. By making multiple
send operations, an arbitrary number of threads of control
may be started. In the case of multiple sends these may be
mutually exclusive. Several of these split control flows may

@ Thread Node with Threadname % Triggering Event

—
Control

Send Operation

- Call Operation

Alternative Thread Subnode
k: Alternative Set Number
I: Alternative Number within Set

Connectoin between
Main and Sub Node

Figure 1. Legend

be joined by a task waiting for input of those control flows.
Finally some tasks will work as IPC sinks. Usually those are
driving actuators interfacing with the embedding system. A
task may be of more than one type; e.g. making calls and
operating as IPC sink.

3.4 Task Precedence Graph

The work of Kolloch [5] was based on SDL, which needs
to address the state of an SDL process. The notion of calls
does not exist in this model. As a result we introduce our
own task precedence graph (TPG) syntax in Figure 1.

As noted previously some communication from one task
may be mutually exclusive. In order to avoid excessive over-
estimation of response times it is considered essential to take
this into account. In this context the main task node con-
tains the WCET of the shared bit of code, which might be
in multiple sections (represented by a single value), calls and
send operations, and links to alternative subnodes. These
alternative subnodes are divided into groups containing mu-
tually exclusive subnodes. In the case of such a subnode
again containing mutually exclusive parts this is handled by
expanding the subnodes. Joint subnodes are duplicated so
each alternative subnode represents exactly one alternative
without further subdivision. This generates more complexity
than necessary, but the discussion of obtaining the WCET for
activities in Section 3.5 becomes more clear. The subactivi-
ties formed by this are again considered to be of the lowest
priority of any task involved in it.

A task, which has several receive only operations will be
called joining task or more specifically of mutual exclusive
joining task or constructive joining task. Mutual exclusive
joining tasks happen, when a task may either receive one or
the other input to the same receive call. Similar to server
tasks these are duplicated. Constructive joining tasks need all
input IPCs to operate and thus connect to all sending tasks.
Additionally there could be an optional joining receive case.
In this case alternatives alongside mutual exclusive send op-
erations can be used. However, this is not considered to be a
prime problem. An example TPG can be found in Figure 2
in Section 4.

3.5 Construction of the WCET of an Activity

Opposed to [5] the system is priority based and can not
as straightforward clip trees from the task precedence graph.
This is driven by the fact that the priorities are not necessarily
as uniform as in the case of the message based EDF schedul-
ing algorithm (cf. Section 2). It might be that an alternative
subactivity being longer than other mutually exclusive subac-
tivities, actually has a lower priority and thus may be subject
to more preemption by other activities. We assume that each
activity has a deadline which is less or equal to the minimum
inter-arrival time of triggering events.

For all activities the following process has to be carried
out. To distinguish it from its subactivities, we will call
this main activity. A more detailed desription of this pro-
cess may be found in [7], which is an extended version of
this paper. For all the subactivities, the WCET is summed
up. Each group of mutually exclusive subactivities, which

exhibits the same priority for all its subactivities, is reduced
to the subactivity with the largest WCET. The groups which
have been dealt like this, are considered mandatory part in
computing the WCET of main activity. In most cases this
will effectively remove any mutually exclusive subactivity
groups, which might exist.

The remaining subactivity groups are reduced by remov-
ing any subactivity from that group, which exhibit either a
priority higher then the subactivity having the largest WCET
within the group or a WCET which is smaller than the WCET
of the subactivity with the lowest priority. Next any mutually
exclusive subactivity groups for which the priority of the sub-
activity group are the same or higher than the lowest priority
of the remaining elements of the main activity are reduced.
The reduction is again achieved by removing all subactivi-
ties, which do not have the largest WCET withing the group.

Of each group the subactivities with the minimal and
maximal priority is chosen. The groups are compared
whether the subactivity with the minimal priority is greater
than the subactivity with maximal priority in the other.
Groups in which all subactivities are higher priority than
another group are also reduced according the WCET and
moved as mandatory element to the main activity.

All remaining groups need to be completely explored; i.e.
any subtask of one group needs to be considered within the
context of the other groups. This leads to a list of tuples of
WCET and lowest used priority for each activity. Further
reduction would at this stage be possible, but due to practical
irrelevance we will not discuss it in this paper.

3.6 Critical Instant

In this context the critical instant deserves special con-
sideration. The base assumption is that the trigger events
of all activities are independent, meaning that the activities
may be started with any phasing. As the priorities of activ-
ities change with the control passed through the tasks it is
worthwhile to ponder to what degree one activity may in-
fluence another. Only tasks with a proirity greater or equal
to the base priority of the activity under consideration may
prolong the response time of this activity. In the case of a
single control flow within the influencing activity only one
chain of tasks with a greater or equal priority will have to be
accounted for. In the case of a split of the control flow an or-
dering of execution may be established and thus the control
flow serialised in terms of influence analysis, unless the split
subactivities have the same priority.

In the case of a split of the control flow, either a chain of
tasks of the activitie’s single control-flow portion may con-
tribute, or one chain of tasks per split of the control flow.
Further dependencies may be used, like fixed ordering of the
execution of these tasks, but this is beyond the rigid mathe-
matical representation. It has to be noted that the start and
end tasks of an activity need to be considered together.

3.7 Response Time Analysis

For the response time of an activity, we need to consider
the impact of the other activities on the activity under con-
sideration. In a first step we discuss the case for an activity

which has a single WCET and priority tuple describing it.
As discussed in the previous section any task with a priority
higher than the minimum priority of the activity under con-
sideration could have an impact.

The priority of the activity under consideration Ay will be
weighed against the priorities of all other tasks. Any task or
subtask with a lower priority than this will be removed from
the appropriate activity diagrams for this analysis. Besides
the trivial cases of no nodes or all nodes of an activity con-
tributing to the response time of another, the case of the part
activities, the WCET will be estimated using the algorithm
described in Section 3.5 applied on all part activities of an
activity and the largest of those will be denoted C}'. In the
case of split control flow, either one part activity of the single
control flow portion or one part activity per split control flow
needs to be taken into account for C'.

The impacting activities will be sorted into two sets in
such a way that H(A;) contains activities of same or higher
priority than A; and L(A;) containing those with lower pri-
ority. Similar to Tindell in [8] the response time will be com-
puted iteratively.

R?ZCj-l- Z ’V

VA}LEH(AJ')

T
—Rn’ilw*Cﬁ d>ooocp

J VAgeL(A;)

The proof of this equation is similar to the proofs of most
iteratively computed response time analysis approaches and
due to space restrictions omitted from this paper. In the case
of activities starting and ending with higher priorities and
operating in lower ones during the main operation the equa-
tion needs to be slightly modified. This is the case for most
activities, as they tend to be triggered by interrupts and po-
tentially use a high priority driver to access actuators. In
that respect we need to see whether this applies. Assuming
we have C';°(p;) and C3” (p;) describing the start and end
block WCET for an activity Ay with same or higher priority
than p;. Should the start block start with a priority lower than
pj than C3%(p;) = 0 and likewise for C¥ (p;). We need to

sort the contents of L(A;) into two sets describing the worst
impact of the each activity in this set.

6 = Ci%(m)+Ci%(py) @
M(4;) = {Af/(AseL(4)) A (> CF)} S
L(4;) = {Af](Apel(4)) A (6 < CF)} @

. T .

VApeH(Aj) J VAgeL*(Aj)
+ > (T +0®) ®)
VAceM(A;)

4 Exemplary Analysis

In this section we go through a small example. The exam-
ple is derived from the Olympus Attitude and Orbital Control
System (AOCS) case study described in [1]. The structure is
adapted from the SDL based model of Kolloch in [5]. All

% Digital Sun Sensor

@ L', IRES Data Proc.

CalibGyro,
Dss IRES
7

Gyro IRES Calibrate

@ /Gyroscope
Control Law
% / Gyro

—
Control

% Gyroscope Raw Data

Attitude

CalibGyro

Critical

Wheel Event
% % Telecommand

Thrusters Environment MomDump

Environment

Figure 2. Task Precedence Graph Examples

times are given in milliseconds. The translation from Kol-
lochs model leads to suboptimal priority assignements, as
many tasks end up with high priorities due to dependencies.

The priorities were assigned in such a way to assign each
task the highest priority of any acitvity it is part of. The
WCETs in Table 3 have been computed by using the values
in Table 2. It has to be noted that the execution times for
tasks like 77 for the use in for example the digital sun sen-
sor, has been made up of the times for the common part plus
the alternative exhibiting no further send operation. Further-
more the part of the triggering interrupts has been neglected
to keep the example illustrative. However, their introduction
would be straight forward.

5 Conclusion

In this paper we have demonstrated an graph based ap-
proach to response time analysis for systems, where the
deadline required by the environment spans a whole set of
tasks. It takes into account blocking and system calls of the
tasks. It allows very efficient analysis of systems incorporat-
ing a large number of tasks, while avoiding excessive overes-
timation. It specifically takes into account where the impact
of operating system activities like interrupt service routines
is mutually inclusive to blocking.

Task | 70 | 71 | ™ T3 73,00 | 73,01 | T4 | 75
Prio. | 1 2 2 1 1 1 1 5
C; 4 10 | 8 5 2 1 11 | 12
Task | 76 | 77 | 7700 | 7701 | 7800 | 7801 | T8 | To
Prio. | 5 7 7 7 6 6 6 0
Cj 6 7 4 3 3 2 10 | 5

Future work will focus on introduction of semaphores
while still maintaining the good estimation of the impact of
other activities in the system. Another area of investigation
will be work towards probabilistic guarantees.

References

[1] A. Burns, A. Wellings, C. Bailey, and E. Fyfe. The Olympus
attitude and orbital control system: A case study in hard real—
time system design and implementation. In Ada sans frontiers,
Proc. of the 12th Ada—Europe Conf., Lecture Notes in Com-
puter Science, pages 19-35. Springer—Verlag, 1993.

[2] F. Engel, G. Heiser, I. Kuz, S. M. Petters, and S. Ruocco. Oper-
ating systems on SoCs: A good idea? In Embedded Real-Time
Systems Implementation (ERTSI 2004) Workshop, Lisbon, Por-
tugal, Dec. 2004.

[3] W.-C. Feng and J. W.-S. Liu. Algorithms for scheduling real-
time tasks with input error and end-to-end deadlines. [EEE
Transactions on Software Engineering, 23, 1997.

[4] H. Hirtig, M. Hohmuth, J. Liedtke, S. Schonberg, and
J. Wolter. The performance of u-kernel-based systems. In Pro-
ceedings of the 16th ACM Symposium on OS Principles, pages
66-77, St. Malo, France, Oct. 1997.

[5] T.Kolloch. Scheduling with Message Deadlines for Hard Real-
Time SDL Systems. Dissertation, Institute for Real-Time Com-
puter Systems, Technical University Munich, Germany, 2002.

[6] L4Ka Team. LL.4Ka::Pistachio kernel.
hitp: //14@.ag/arojects/alstachio/

[71 S. M. Petters. A graph-based response-time analysis of sys-
tems with deadlines spanning multiple tasks. Technical Re-
port NICTA-050801T-1, National ICT Australia, Sydney 2052,
Australia, Aug. 2005.

[8] K. Tindell. Adding time-offsets to schedulability analysis.
Technical report YCS221 (1994), University of York, Depart-
ment of Computer Science, York, YO10 5DD, United King-
dom, 1994.

Table 1. Periods, Priorities and Deadlines of
Activities

Event Type | Period | Deadl. | Priority and A; | WCET Impact of Activity R;

Activity No. 1 | 2 | 3 | 4 | S | 6 | 7
Critical Wheel Event | 10000 | 100 1 1|31 - 4112 47
Gyroscope Raw Data | 100 100 2 218 31 - [8 [4]22 10 | 97
IRES Data Processing | 100 100 3 318 31 |18 - [4]22 10 | 97
Telecommands | 190 190 4 414 31 - [22 57
Control Law | 200 200 5 5148 31 36|16 |4 - 10 | 145
Digital Sun Sensor | 1000 1000 | 6 6123 31 3616|448] - | 33| 191
Calibrate Gyroscope | 1000 1000 | 7 7133 3113 |16 |4 48|23] - | 191

Table 3. WCETSs, Impact of other Activities and
Response Times for Activities

