
NICTA Technical Report ISSN 1833-9646

Execution-Time Profiles

Stefan M. Petters

National ICT Australia∗

Sydney NSW 2052
Australia

smp@nicta.com.au

Abstract

Probabilistic methods of analysis have gained increased
popularity in the real-time research community. This
covers schedulability analysis as well as WCET anal-
ysis. While the concept of execution-time profiles as
unit of computation in theses analysis is not new, there
is so far a lack of a reference definition and summary of
the interpretation of, representation of and operations
performed on execution-time profiles. This technical
report aims to collate and summarise these in a single
document.

1 Introduction

Establishing the worst-case system response time for all
system actions is an integral part of the real-time anal-
ysis of a system. We define such a system action as
the operations performed by the system in response to a
triggering event, e.g. a time event or an event in the sys-
tem environment and its response time is described by
the time interval between the triggering event and the
system response.

Various methods of doing this response-time analysis
(e.g. [1]) have been proposed and in most cases they
require the worst-case execution time (WCET) of each
part of all actions, for example, task or system call in
isolation. The response-time analysis takes interference
and interdependence into account to result in a worst-
case response time for each system action.

∗National ICT Australia is funded by the Australian Government’s
Department of Communications, Information Technology, and the
Arts and the Australian Research Council through Backing Aus-
tralia’s Ability and the ICT Research Centre of Excellence programs.

For both the response-time analysis as well as for the
WCET analysis probabilistic approaches have been pro-
posed which describe the execution time of code or the
response time of an action as a distribution with dif-
ferent probabilities rather than a single worst-case de-
scription. While the terminology used in this paper is
mainly derived from measurement-based WCET analy-
sis as a starting point, the discussion is limited neither
to WCET analysis (e.g. [2]) nor to measurement-based
analysis (e.g. [3]). Furthermore it is equally applicable
to tree or path based methods.

Most of the content of this paper is not fundamen-
tally new, but has been implicitly or explicitly used or
introduced in other papers [4–6]. The aim of this paper
is to collate those findings and discussions for future
reference.

2 Execution-Time Profile Inter-
pretation

Execution-time profiles (ETPs) have two different
meanings depending on whether they represent units of
software directly measured or obtained by static analy-
sis or represent compound units whose ETP is a result
of the combination of two or more other ETPs.

2.1 Measurement Unit Level

In this context an ETP describes the probability distri-
bution of different execution times of the code mea-
sured. This is usually achieved by taking histograms
of execution time observed as depicted in Figure 1 and
dividing those by the overall number of measurements
observed of the respective unit, effectively norming the

1

NICTA Technical Report ISSN 1833-9646

distribution to 1. The result as shown in Figure 2 is
distinguished from Figure 1 only in scale and interpre-
tation.

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

N
um

be
r

of
 T

im
es

 O
bs

er
ve

d

Execution Time [ns]

Figure 1: Execution Time Histogram

 1e-04

 0.001

 0.01

 0.1

 1

 0 200 400 600 800 1000 1200

P
ro

ba
bi

lit
y

Execution Time [ns]

Figure 2: Execution Time Profile from Example in Fig-
ure 1

Usually measurements are taken with discrete values
down to the granularity of processor core cycles. The
discrete nature of the probabilities implies that these
profiles are probability mass functions.

Initial work [6] used basic blocks represented by
the nodes in a control-flow graph as measurement unit
while later work [7] moved the weight of computation
from the basic blocks to the transitions between basic
blocks represented as the edges in a control-flow graph.
The discussion of ETPs in this paper applies to both
concepts. From now on we will use the termcode with
an identifierA, B, C, . . . to reference either a block of
code if applied to an approach like [6] or a transitions
between two nodes of the control-flow graph [7].

2.2 Compound Level

While the notion of what ETPs represent at the
measurement-unit level is fairly straightforward, it is
less clear what they actually mean and represent for
compound blocks, which are constructed by combin-
ing two or more measured or compound profiles. For
this it is helpful to reflect on what the extreme value
of such an ETP represents. The extreme value of an
ETP at compund level is only an upper bound on the
WCET, while the real value for the WCET is generally
unknown. Just as for the WCETs, the probabilities of
a compound block need to be interpreted as an upper
bound on thereal probability distribution of the code
represented by the compound block.

This interpretation is based on two assumptios:

1. The measurements captured the WCET of the code
at the measurement unit level. Within NICTA
there is currently an effort which aims to provide
proof of having observed the WCET on the mea-
surement level [8].

2. All operations performed to obtain this ETP need
to be conservative, meaning, no operation may
make optimistic assumptions, which could poten-
tially lead to a computed ETP to be lesser in any
point than thereal ETP. The comparison operators
of lesser than, greater than etc. will be explored in
greater detail in Section 4.1.

3 Representation of ETPs

The discussions in this section use the terminology and
context of Section 2.1 for clarity of representation, but
the defined operations are equally applicable to any
ETPs describing a compound block of code.

Let S be the set of different execution timesETA

observed for the measured codeA the probability mass
function an ETP (cA(t)) is consistently with the exam-
ple in Figure 2 defined as:

cA(t) =

{

P (ETA = t) : t ∈ S

0 : t ∈ R \ S
(1)

In order to be able to define comparison operators
as required by Section 2.2, the cumulative distribution
function provides a slightly more adequate representa-
tion.

2

NICTA Technical Report ISSN 1833-9646

Ccum

A (t) =
t

∑

s=0

cA(s) (2)

Informally Ccum

A
(t) describes the probability of an

execution time ofA being shorter than or equal tot.
Trivially, the inverse function to obtain the probability
mass function from the cumulative probability function
is:

cA(t) = Ccum

A (t) − Ccum

A (t − 1) (3)

Graphically this representation of our example distri-
bution introduced in Figure 1 is depicted in Figure 3.
While the cumulative representation is reasonable for
defining some operators, it is not suited for graphical
analysis by inspection, as the most relevant portion of
the ETP at the right hand tail is usually subject to small
probabilities and thus barely intelligible as can be seen
for execution time larger than 400ns in Figure 3.

 1e-04

 0.001

 0.01

 0.1

 1

 0 200 400 600 800 1000 1200

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Execution Time [ns]

Figure 3: Cumulative Representation of ETP in Fig-
ure 2

The complementary cumulative probability (CCP)
mass functionCA(t) combines the ease of mathemat-
ical expression with the good visibility of the most rel-
evant part of the ETP which can be observed in the
sample provided as Figure 4 enhanced by using a log-
arithmic scale on the y-axis.CA(t) provides the prob-
ability of A exposing a execution time larger thant.
The CCP representation has also the advantage of mak-
ing the comparison and choice operators more intuitive
which will become obvious in Sections 4.1 and 4.2.

CA(t) = 1 − Ccum

A (t) (4)

The direct conversion between CCP representation
and probability mass function representation is defined

as follows:

CA(t) = 1 −

t
∑

s=0

cA(s) (5)

or simpler as:

CA(t) =

∞
∑

s=t+1

cA(s) (6)

The reverse transformation is defined as:

cA(t) = CA(t − 1) − CA(t) (7)

 1e-04

 0.001

 0.01

 0.1

 1

 0 200 400 600 800 1000 1200

1
-

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Execution Time [ns]

Figure 4: Complementary Cumulative Representation
of ETP in Figure 2

It needs to be stressed that the three representations
Ccum

A
(t), CA(t), andcA(t) describe all the same unitA

and have simple one-to-one and only one relationship
in all their points. In the rest of the paper we make
a slight distinction betweenCA(t) which denotes the
probability of time t being exceeded for codeA and
CA which denotes the whole ETP.

4 Operators

This section aims to provide the mathematical founda-
tion for operations performed on ETPs. Similar to the
last section we are referring in this context to ETPs at
the measurement unit as well as at the compound level.
Figures 5 and 6 contain sample ETPs which will be used
in the following discussion.

3

NICTA Technical Report ISSN 1833-9646

4.1 Comparisons

Before going into detail of the discussion about compar-
ison operators it has to be stressed that the concepts pre-
sented here are not of standard nomenclature in proba-
bility theory, but are very specific to the domain of real-
time analysis.

The trivial comparison operator is equality of two
ETPsA andB. The two ETPs are identical i.e.:

CA = CB ⇐⇒ ∀t : CA(t) = CB(t) (8)

The greater or equal and lesser or equal operators
need some more detailed discussion. As a first step we
need to informally define what these operators imply. If
the ETP of blockA is greater or equal to that of block
B that means that for any given execution timet, the
probability of an execution time ofA being greater than
t is larger or equal than the probability forB.

CA ≥ CB ⇐⇒ ∀t : CA(t) ≥ CB(t) (9)

The same logic applies when looking to thelesser or
equal operator.

CA ≤ CB ⇐⇒ ∀t : CA(t) ≤ CB(t) (10)

Since these operators are defined on CCP mass func-
tions a strictless than or strict greater than would re-
quire exceptions for valuesCA = 0 andCA = 1. How-
ever, for the purpose of real-time analysis these strict
comparison operators are not needed. TheGaussian
and Biased ETPs in Figure 6 are less or equal com-
pered to theSupremal ETP. However, such a ordering
is not possible between theGaussian andBiased ETPs
i.e. bothGaussian ETP is in some points larger than the
biased and vice versa.

4.2 Choice

Whenever choices need to be expressed themax and
min operators are used.

CC = max {CA, CB} (11)

if and only if:

∀t : CC(t) = max {CA(t), CB(t)} (12)

CC = min {CA, CB} (13)

if and only if:

∀t : CC(t) = min {CA(t), CB(t)} (14)

These two operators are associative and commuta-
tive. The act of defining themin operator may come
as a bit of a surprise, but simplifies some comparisons
when deciding which of more than two alternatives is
the worst case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

1
-

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Execution Time

Figure 5: A Simple Sample ETP

4.3 Convolutions

Convolutions are used to express the combination of
random variables in an additive way, where the result-
ing value is the value produced by the first random
variable plus the value produced by the second random
variable. While there exist many different convolutions
representing different assumptions regarding the depen-
dencies between the random variable, we will concen-
trate on the discussion of only a few, which we perceive
as relevant in the context of real-time analysis. Fig-
ure 5 contains a very simple sample ETP which will
be used to illustrate the effects of the different types of
convolutions. Three central features of convolutions are
associativity, commutativity, and distributivity with re-
spect to themax andmin operators are important as
they imply that order of performing the convolutions is
irrelevant and we can move convolutions into alterna-
tives. This is highly desirable in a tree based approaches
which validates the use of a tree and associated schema
and allows tightening results by delaying decisions with
regards to the choice operators. However, please note
the exceptions with the known dependencies below.

4

NICTA Technical Report ISSN 1833-9646

Gaussian Convolution The most common convolu-
tion is the Gaussian convolution. However, the its use is
only permissible if the two random variables combined
are independent of each other. The Gaussian convolu-
tion is defined using the probability mass representation
as:

cC(t) =
∑

s

cA(s) ∗ cB(t − s) (15)

Figure 6 shows the Gaussian convolution of two identi-
cal ETPs depicted in Figure 5.

For obvious reasons the independence assumption
for ETPs is not generally the case for subsequent code
segments as, for example, instruction caches establish
a certain dependence between subsequent code which
is often reflected in dependecies between the ETPs of
these code blocks. It can be argued that there is a cer-
tain level of independence between basic blocks which
are far apart from each other. The assumption of inde-
pendence may be used in some soft real-time systems,
to obtain a more “realistic” distribution as such is given
here, but for hard real-time systems this would not not
good enough.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

1
-

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Execution Time

"Gaussian"
"Biased"

"Supremal"
"Infimal"

Figure 6: Different Convolutions

“Biased” Convolution A second option is to assume
perfect positive correlation between two random vari-
ables branded by Bernat et al. [6] asbiased convolution.
However, this convolution leads to considerable overes-
timation in the probabilities near the WCET while lack-
ing the ability to account for arbitrary dependencies.
This is particularly evident in the center of the result-
ing distribution where it is easy to create a dependency

structure between the two ETPs to produce an underes-
timation as the result of the convolution compared to the
real value. Hence, the convolution is only provided for
the sake of completeness, as we doubt it has any practi-
cal relevance. The biased convolution can be described
by:

∀t1∃t2 : CA(t1) = CB(t2) → CC(t1 + t2) = CA(t1)
(16)

Supremal Convolution The third option is the supre-
mal convolution [9]. This options is the most pes-
simistic of the three convolutions presented here, but
captures any possible dependency in a worst case man-
ner. It is the dual operation to the infimal operation,
which covers any possible dependency for a best case
scenario. Any real dependency is bound by these two
functions.

CC(tr) = sup
t1+t2=tr

{max (CA(t1), CB(t2))} (17)

The infimal convolution is the dual of the supremal
convolution and might be used for best-case analysis. It
is defined as:

CC(tr) = inf
t1+t2=tr

{min (CA(t1), CB(t2))} (18)

Figure 6 shows how the supremal and infimal con-
volutions on the sample ETP in Figure 5 envelope the
profiles.

Known Dependencies So far we have either made
simplistic assumptions about dependencies, or, in case
of the supremal convolution no assumptions at all, but
rather used a bounding function. However, when the de-
pendency structure is known or partially known [8] we
can use copulas to express this dependency structure. A
copula is a mapping [9]:

[0, 1]× [0, 1] → [0, 1] (19)

Discounting all but the boundary cases ofCA(t) = 1
andCA(t) = 0, CA(t) is a one-to-one mappingt →
[0, 1] for a blockA we can use a copula to relate the ex-
ecution time of two ETPsA andB. The supremal and
infimal convolutions may easily be derived and proven
using copulas [9]. Note that the operation using copulas
is not commutative and only distributive with respect to

5

NICTA Technical Report ISSN 1833-9646

the max andmin operator. Developing the exact for-
malism to introduce known dependencies is subject to
future work.

A slightly different challenge is the expression of par-
tial known dependencies. Schaefer et al. [8], for exam-
ple, aim to establish the dependencies of first order ef-
fects between measurement-unit level blocks. However,
second order effects are not covered and thus have to be
subject to treatment with appropriate measures within
the bounds set by the known dependencies. In this par-
ticular model, sections of the ETPs are associated with
each other. This can be shown in an example where
the interval[t1, t2] of CA is yielding an execution time
in the interval[t3, t4] of CB. We can perform supremal
convolutions of the corresponding parts of the ETPs and
superpose the results in the probability mass function
representation.

However, the question arises with which probabili-
ties in blockC the result would be associated with. Mo-
tivation for this is the case in which the parts of the two
ETPs associated with each other contain not necessarily
the same probabilistic weight, i.e.CA(t2) − CA(t1) 6=
CB(t4) − CB(t3). This can be explained by, for exam-
ple, B being executed in a path without executingA.
If a clear path dependency exists i.e., wheneverA is
executedB is also executed, the weight of the relevant
section ofA (i.e. CA(t2)−CA(t1) in the example used
above) can be used to weight the result of the convolu-
tion in the superposition.

In case the resulting partial profiles are non overlap-
ping we can still reason about the weights for the super-
position to bias the results towards the worst case, but
the issue when there is neither the statement of path de-
pendency nor non-overlappingpartial profiles for super-
position is so far unresolved and needs to be addressed.

5 Conclusion

Within this paper we have discussed execution-time
profiles, their interpretation, representations and some
operations which may be performed on them. The pre-
sented methods are not only applicable for WCET anal-
ysis but also for response-time analysis in which case
the profile would be called response-time profile.

Open questions for future work are mainly in the
area of dealing with known dependencies between
execution-time profiles using copulas and dealing with
partial dependencies in a effective, but nevertheless
conservative manner.

References
[1] K. Tindell, “Holistic schedulability analysis for dis-

tributed hard real-time systems,” technical report
YCS187 (1993), University of York, Department of Com-
puter Science, York, YO10 5DD, United Kingdom, 1993.

[2] A. Burns, G. Bernat, and I. Broster, “A probabilistic
framework for schedulability analysis,” inProceedings of
the Third International Embedded Software Conference,
(Philadelphia, Pennsylvania, USA), pp. 1–15, Oct. 13-15
2003.

[3] L. David and I. Puaut, “Static determination of probabilis-
tic execution times,” inProceedings of the 16th Euromi-
cro Conference on Real-Time Systems, (Catania, Italy),
July 1-3 2004.

[4] A. Colin and S. M. Petters, “Experimental evaluation of
code properties for WCET analysis,” inProceedings of
the 24th IEEE International Real-Time Systems Sympo-
sium, (Cancun, Mexico), Dec. 3–5 2003.

[5] G. Bernat, A. Colin, and S. M. Petters, “pWCET: a
tool for probabilistic worst case execution time analysis
of real–time systems,” technical report YCS353 (2003),
University of York, Department of Computer Science,
York, YO10 5DD, United Kingdom, Apr. 2003.

[6] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis
of probabilistic hard real–time systems,” inProceedings
of the 24th IEEE Real-Time Systems Symposium, (Austin,
Texas, USA), pp. 279–288, Dec. 3–5 2002.

[7] S. M. Petters, A. Betts, and G. Bernat, “A new tim-
ing schema for WCET analysis,” inProceedings of the
4th Workshop on Worst-Case Execution-Time Analysis,
(Catania, Italy), June 30 2004. Satellite Workshop of the
16th Euromicro Conference on Real-Time Systems.

[8] S. Schaefer, B. Scholz, S. M. Petters, and G. Heiser,
“Static analysis support for measurement-based WCET
analysis,” in12th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Appli-
cations, Work-in-Progress Session, (Sydney, Australia),
Aug. 2006.

[9] R. C. Williamson, Probabilistic Arithmetic. PhD the-
sis, Department of Electrical Engineering, University of
Queensland, Brisbane, Australia, Aug. 1989.

6

