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Abstract For both the response-time analysis as well as for the
WCET analysis probabilistic approaches have been pro-
Probabilistic methods of analysis have gained increagguied which describe the execution time of code or the
popularity in the real-time research community. Thikesponse time of an action as a distribution with dif-
covers schedulability analysis as well as WCET anderent probabilities rather than a single worst-case de-
ysis. While the concept of execution-time profiles agription. While the terminology used in this paper is
unit of computation in theses analysis is not new, themginly derived from measurement-based WCET analy-
is so far a lack of a reference definition and summary sis as a starting point, the discussion is limited neither
the interpretation of, representation of and operatiottis WCET analysis (e.g. [2]) nor to measurement-based
performed on execution-time profiles. This technicahalysis (e.g. [3]). Furthermore it is equally applicable
report aims to collate and summarise these in a singgetree or path based methods.
document. Most of the content of this paper is not fundamen-
tally new, but has been implicitly or explicitly used or
introduced in other papers [4—6]. The aim of this paper
1 Introduction is to collate those findings and discussions for future
reference.

Establishing the worst-case system response time for all

system actions is an integral part of the real-time anz- . . .

ysis of a system. We define such a system action ‘as Execution-Time Profile  Inter-

the operations performed by the system in response to a pretation

triggering event, e.g. a time event or an event in the sys-

tem environment and its response time is described Byecution-time profiles (ETPs) have two different

the time interval between the triggering event and tihgeanings depending on whether they represent units of

system response. software directly measured or obtained by static analy-
Various methods of doing this response-time analysiss or represent compound units whose ETP is a result

(e.g. [1]) have been proposed and in most cases tlofghe combination of two or more other ETPs.

require the worst-case execution time (WCET) of each

part of all actions, for example, task or system call rlz M t Unit L |
isolation. The response-time analysis takes interfere '(-;l' easurement UnitLeve

and interdependence into account to result in & Worgi-this context an ETP describes the probability distri-
case response time for each system action. bution of different execution times of the code mea-
_ —_ _ sured. This is usually achieved by taking histograms
National ICT Australlg is funded by the Australlan Govermte of execution time observed as depicted in Figure 1 and
Department of Communications, Information Technologyd éme ~. .
Arts and the Australian Research Council through BackingD-Aud'Wd'ng those by the OYera” qumber Qf measur_emems
tralia’s Ability and the ICT Research Centre of Excellencegtams. observed of the respective unit, effectively norming the
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distribution to 1. The result as shown in Figure 2 i2.2 Compound Level

distinguished from Figure 1 only in scale and interpre- _
tation. While the notion of what ETPs represent at the

measurement-unit level is fairly straightforward, it is

less clear what they actually mean and represent for

compound blocks, which are constructed by combin-

1000 ¢ ] ing two or more measured or compound profiles. For

this it is helpful to reflect on what the extreme value

100 | | of such an ETP represents. The extreme value of an

ETP at compund level is only an upper bound on the
WCET, while the real value for the WCET is generally
unknown. Just as for the WCETS, the probabilities of
a compound block need to be interpreted as an upper

‘ H ] bound on theeal probability distribution of the code

LI LT I, | | represented by the compound block.

This interpretation is based on two assumptios:
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Figure 1: Execution Time Histogram 1. The measurements captured the WCET of the code
at the measurement unit level. Within NICTA
there is currently an effort which aims to provide
proof of having observed the WCET on the mea-
surement level [8].

01¢ 1 2. All operations performed to obtain this ETP need
to be conservative, meaning, no operation may
make optimistic assumptions, which could poten-
tially lead to a computed ETP to be lesser in any

0.01 }
point than theeal ETP. The comparison operators
|

Probability

0.001 ¢ of lesser than, greater than etc. will be explored in

] ‘\H | H‘ greater detail in Section 4.1.

0 200 400 600 800 1000 1200
Fxection Time [ns] 3 Representation of ETPs
Figure 2: Execution Time Profile from Example in Fig-
ure 1 The discussions in this section use the terminology and
context of Section 2.1 for clarity of representation, but
Usually measurements are taken with discrete valubs defined operations are equally applicable to any
down to the granularity of processor core cycles. THelPs describing a compound block of code.
discrete nature of the probabilities implies that theseLet S be the set of different execution timesT 4
profiles are probability mass functions. observed for the measured cadehe probability mass
Initial work [6] used basic blocks represented bfunction an ETP {4(¢)) is consistently with the exam-
the nodes in a control-flow graph as measurement upii¢ in Figure 2 defined as:
while later work [7] moved the weight of computation
from the basic blocks to the transitions between basic [ P(ETp=t) : teS 1
blocks represented as the edges in a control-flow graph. Alt) = 0 : teR\S (1)
The discussion of ETPs in this paper applies to both
concepts. From now on we will use the teaade with In order to be able to define comparison operators
an identifier A, B, C, ...to reference either a block ofas required by Section 2.2, the cumulative distribution
code if applied to an approach like [6] or a transitionfsinction provides a slightly more adequate representa-
between two nodes of the control-flow graph [7]. tion.

le-04
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. as follows:
CL™t) = cals) ) ¢
=0 Ca(t)=1- cals) 5)
Informally C¢*™(t) describes the probability of an s=0
execution time ofA being shorter than or equal to or simpler as:
Trivially, the inverse function to obtain the probability P '
mass function from the cumulative probability function oo
s: . . Calty =) cals) (6)
ca(t) = CZH™ () —CG™(t - 1) 3) s=t+1

Graphically this representation of our example distri-
bution introduced in Figure 1 is depicted in Figure 3.
While the cumulative representation is reasonable for
defining some operators, it is not suited for graphical ca(t) = Calt —1) = Calt) (7)
analysis by inspection, as the most relevant portion of
the ETP at the right hand tail is usually subject to small

The reverse transformation is defined as:

probabilities and thus barely intelligible as can be seen 1T
for execution time larger than 400ns in Figure 3.
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Figure 3: Cumulative Representation of ETP in Fig- It needs to be stressed that the three representations
ure 2 Cq™(t), Ca(t), andc 4 (t) describe all the same unit
and have simple one-to-one and only one relationship
The complementary cumulative probability (CCPh all their points. In the rest of the paper we make
mass functiorC 4(t) combines the ease of mathemak slight distinction betweer 4 (¢) which denotes the

ical expression with the good visibility of the most relprobability of timet¢ being exceeded for codd and
evant part of the ETP which can be observed in the, which denotes the whole ETP.

sample provided as Figure 4 enhanced by using a log-

arithmic scale on the y-axi<'4(t) provides the prob-

ability of A exposing a execution time larger than

The CCP representation has also the advantage of mﬂ-k- Operators
ing the comparison and choice operators more intuiti

which will become obvious in Sections 4.1 and 4.2, Mis section aims to provide the mathematical founda-

tion for operations performed on ETPs. Similar to the
last section we are referring in this context to ETPs at
_ _ cum
Calt) =1-CZ™(1) (4) the measurement unit as well as at the compound level.
The direct conversion between CCP representatibigures 5 and 6 contain sample ETPs which will be used
and probability mass function representation is definedthe following discussion.
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4.1 Comparisons if and only if:

Before going into detail of the discussion about compar- Vit : Ce(t) = min {C4(t), C(t)} (14)
ison operators it has to be stressed that the concepts pre- ’

sented here are not of standard nomenclature in probarnese two operators are associative and commuta-
bility theory, but are very specific to the domain of reakye  The act of defining thenin operator may come

time analysis. _ _ _ as a bit of a surprise, but simplifies some comparisons
The trivial comparison operator is equality of tWQyhen deciding which of more than two alternatives is
ETPsA andB. The two ETPs are identical i.e.. the worst case.

Cq=Cp < Vit:Cut) =Cs(t) (8)

1
The greater or equal andlesser or equal operators
need some more detailed discussion. As a first step vi& 0s |

lity

need to informally define what these operators imply. If‘éS
the ETP of blockA is greater or equal to that of block % o6 |
B that means that for any given execution timehe 2
probability of an execution time ofl being greaterthan 2 0.4
t is larger or equal than the probability féx. 3
o 027}
Ca>Cp < Vt:Cal(t) > Cp(t) ) o

The same logic applies when looking to tlesser or 0 05 1 15 2‘ 2'5 3 35 4 4%
Execution Time

equal operator.
Figure 5: A Simple Sample ETP
Cyu <Cp < Vt:C4u(t) <Cxr(t) (20)

Since these operators are defined on CCP mass func-
tions a strictless than or strict greater than would re- 4.3 Convolutions
quire exceptions for valugs, = 0 andC 4 = 1. How-
ever, for the purpose of real-time analysis these strigonvolutions are used to express the combination of
comparison operators are not needed. Bamissan random variables in an additive way, where the result-
and Biased ETPs in Figure 6 are less or equal coning value is the value produced by the first random
pered to theSupremal ETP. However, such a orderingvariable plus the value produced by the second random
is not possible between ti@aussian andBiased ETPs variable. While there exist many different convolutions
i.e. bothGaussian ETP is in some points larger than théepresenting different assumptions regarding the depen-
biased and vice versa. dencies between the random variable, we will concen-
trate on the discussion of only a few, which we perceive
. as relevant in the context of real-time analysis. Fig-
4.2 Choice ure 5 contains a very simple sample ETP which will
Whenever choices need to be expressedntae and be used to illustrate the effects of the different types of
min operators are used. convolutions. Three central features of convolutions are

associativity, commutativity, and distributivity with+e

o spect to themax and min operators are important as
Ce = max{Cx, C} (11) they imply that order of performing the convolutions is
if and only if: irrelevant and we can move convolutions into alterna-
tives. This is highly desirable in a tree based approaches
Vit : Ce(t) = max {C4(t),Cp(t)} (12) which validates the use of a tree and associated schema

and allows tightening results by delaying decisions with
regards to the choice operators. However, please note
Ce =min{C4,Cg} (13) the exceptions with the known dependencies below.
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Gaussian Convolution The most common convolu-structure between the two ETPs to produce an underes-
tion is the Gaussian convolution. However, the its usetimation as the result of the convolution compared to the
only permissible if the two random variables combinesal value. Hence, the convolution is only provided for
are independent of each other. The Gaussian convahe sake of completeness, as we doubt it has any practi-
tion is defined using the probability mass representatioal relevance. The biased convolution can be described
as: by:

ce(t) = cals)=ca(t —s) (15) Vh3ta: Caltr) = Cu(ts) — Ce(tr +t2) = CA((tl%)

S

Figure 6 shows the Gaussian convolution of two identi- ) i o
cal ETPs depicted in Figure 5. Supremal Convolution The third option is the supre-

For obvious reasons the independence assumptia’ c_onv?luhtlonh[Q]. Thlslor_mons is the ?%St pez-
for ETPs is not generally the case for subsequent co@!Stic of the t re‘lfl cgnvo u;cjlons presented here, but
segments as, for example, instruction caches estabf&RIUIEs any possible dependency in a worst case man-

a certain dependence between subsequent code whith It is the dual operation to the infimal operation,

is often reflected in dependecies between the ETPsV‘ﬂ}'Ch covers any possible dependency for a best case

these code blocks. It can be argued that there is a @§enario. Any real dependency is bound by these two
tain level of independence between basic blocks whil['ctions.
are far apart from each other. The assumption of inde-

endence may be used in some soft real-time systems,
y ¢ Yo Ce(t,) = sup {max(Ca(tr), Cx(t2))}  (17)

to obtain a more “realistic” distribution as such is given byttt
here, but for hard real-time systems this would not not
good enough. The infimal convolution is the dual of the supremal
convolution and might be used for best-case analysis. It
is defined as:
l B
> Ce(ty) = inf {min(Ca(t1),Cg(t2))} (18)
T‘Eé os | | t1+ta=t,
:_5 Figure 6 shows how the supremal and infimal con-
v 067 1 volutions on the sample ETP in Figure 5 envelope the
& profiles.
g2 04r
o "Gaussian®
oo | cagssan ] Known Dependencies So far we have either made
"Stf}l)r:tf%img:: simplistic assumptions about dependencies, or, in case

of the supremal convolution no assumptions at all, but
rather used a bounding function. However, when the de-
pendency structure is known or partially known [8] we
Figure 6: Different Convolutions can use copulas to express this dependency structure. A
copulais a mapping [9]:

0 1 2 3 4 5 6 7 8
Execution Time

[0,1] x [0,1] — [0, 1] (19)
“Biased” Convolution A second option is to assume
perfect positive correlation between two random vari- Discounting all but the boundary caseg9f(t) = 1
ables branded by Bernat et al. [6]lsiased convolution. andC4(t) = 0, C4(¢) is a one-to-one mapping —
However, this convolution leads to considerable overgs; 1] for a block.A we can use a copula to relate the ex-
timation in the probabilities near the WCET while lackecution time of two ETPs$4 and5. The supremal and
ing the ability to account for arbitrary dependenciemfimal convolutions may easily be derived and proven
This is particularly evident in the center of the resultising copulas [9]. Note that the operation using copulas
ing distribution where it is easy to create a dependenisynot commutative and only distributive with respect to
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Open questions for future work are mainly in the
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