
Real-Time Programming and L4 Microkernels

Sergio Ruocco
National ICT Australia∗

and
School of Computer Science and Engineering

University of New South Wales, Sydney 2052, Australia
sergio.ruocco@nicta.com.au

Abstract

L4-embedded is a microkernel successfully deployed in
mobile devices with soft real-time requirements that now
faces the challenges of tightly integrated systems, where
user interface, multimedia, OS, wireless protocols and even
software-defined radios must run on a single CPU. This pa-
per discusses the various aspects of real-time programming
on L4-embedded, focusing on the issues caused by the ex-
treme speed optimisations it inherited from its ancestors.
We conclude that real-time programming on L4-embedded
is facilitated by a number of design features unique to mi-
crokernels and L4, but a review of the tradeoffs between
performance and predictability would ease priority-driven
real-time programming.

1. Introduction
The most challenging front of real-time today are mobile

embedded systems. They run fully-featured operating sys-
tems, complex multimedia applications and multiple com-
munication protocols at the same time. As networked sys-
tems they are exposed to security threats; moreover, their
(inexperienced) users run untrusted code, like games, that
poses both security and real-time challenges. Therefore
complete isolation from untrusted applications is indispens-
able for user data confidentiality, proper system functioning,
and manufacturer’s IP protection.

In practice, today’s mobile systems must provide func-
tionalities equivalent to desktop and server ones, but with
severely limited resources and strict real-time constraints.
Conventional RTOSes are not well suited to meet these re-
quirements: simpler ones are not secure, and even those
with memory protection are generally conceived as embed-

∗National ICT Australia is funded by the Australian Government’s De-
partment of Communications, Information Technology, and the Arts and
the Australian Research Council through Backing Australia’s Ability and
the ICT Research Centre of Excellence programs.

ded software platforms, not operating systems foundations.
L4-embedded [24] is a second-generation microkernel

that meets these requirements, and has been successfully
deployed in mobile phones with soft real-time constraints.
However, it is now facing the challenges of next-generation
mobile phones, where applications, user interface, multi-
media, OS, wireless protocols and even software-defined ra-
dios must run on a single CPU.

Can L4-embedded meet such strict real-time constraints?
It is thoroughly optimized and is certainly fast, but “Real
Fast is not Real Time” [15]. The aim of this paper is to shed
some light on these issues by a thorough analysis of the L4-
embedded internals that determine its temporal behaviour, to
assess them as strengths or weaknesses with respect to real-
time, and finally to indicate where research and development
are currently focussing, or should probably focus, towards
their improvement.

It has been found that (i) some aspects of the L4 design
are clear advantages for real-time systems, for example in-
terrupt handlers and device drivers cannot impact system
timeliness; (ii) the extreme performance optimisations that
L4-embedded inherited from previous implementations, es-
pecially those performed in the critical IPC path, are, to a
large degree, the main sources of complexity for real-time
scheduling.

We conclude that (i) real-time programming on top of L4-
embedded is possible, provided that programmers are aware
of some of its implementation details, and take appropri-
ate measures for the case at hand; (ii) a review of the cur-
rent tradeoffs between performance and predictability would
ease priority-driven real-time programming.

The rest of the paper is structured as follows. Section 2
introduces microkernels and the basic principles of their de-
sign, singling out the relevant ones for real-time systems.
Section 3 describes the design of L4 and its API. Section 4
analyses in detail L4-embedded internals and their implica-
tions for real-time systems design. Finally Section 5 con-
cludes the paper.

2. Microkernels
Microkernels are minimalist operating systems kernels

structured according to specific design principles. They im-
plement only the smallest set of abstractions and operations
that require privileges, typically address spaces, threads with
basic scheduling and message-based interprocess commu-
nication (IPC). All the other features which may be found
in ordinary monolithic kernels (such as drivers, filesystems,
paging, networking, etc.) but can run in user mode are im-
plemented in user-level servers. Servers run in separate pro-
tected address spaces and communicate via IPC and shared
memory using well-defined protocols.

The touted benefits of building an operating system on
top of a microkernel are better modularity, flexibility, re-
liability, trustworthiness and viability for multimedia and
real-time applications than those possible with traditional
monolithic kernels [22]. Yet operating systems based on
first-generation microkernels like Mach [6] did not deliver
the promised benefits: they were significantly slower than
their monolithic counterparts, casting doubts on the whole
approach. In order to regain some performance, Mach and
other microkernels brought back some critical servers and
drivers into the kernel protection domain, compromising the
benefits of microkernel-based design.

A careful analysis of the real causes of Mach’s lacklus-
tre performance, however, showed that the fault was not in
the microkernel idea, but in its initial implementation. The
first-generation microkernels were derived by scaling down
monolithic kernels, rather than from clean-slate designs.
As a consequence, they suffered from poorly performing
IPC and excessive footprint that thrashed CPU caches and
TLBs [20]. This led to a second generation of microkernels
designed from scratch with a minimal and clean architec-
ture, and strong emphasis on performance. Among them are
Exokernels [4], L4 [20] and Nemesis [17]:

Exokernels developed at MIT in 1994-95 based on the idea
that kernel abstractions restrict flexibility and perfor-
mance, hence must be eliminated [3]. The role of the
exokernel is to protect and securely multiplex hardware,
and export primitives for applications to freely imple-
ment the abstractions that best satisfy their requirements.

L4 developed at GMD in 1995 as a successor of L3 [19]
based on a design philosophy less extreme than exoker-
nels, but equally aggressive with respect to performance.
L4 provides high flexibility and performance to an oper-
ating system via the least set of privileged abstractions.

Nemesis developed at the University of Cambridge in
1993-95 with the aim of providing quality of service
(QoS) guarantees on resources like CPU, memory, and
disk and network bandwidth to multimedia applications.

Besides academic research, since the early ’80s the em-
bedded software industry developed and deployed a num-

ber of microkernel-based RTOSes. Two prominent ones are
QNX and GreenHills Integrity. QNX was developed in early
’80s for the 80x86 family of CPUs [8]. Since then it evolved
and has been ported to a number of different architectures.
GreenHills Integrity is a highly optimised commercial em-
bedded RTOS with preemptable kernel and low interrupt la-
tency, and it is available for a number of architectures.

Like all microkernels QNX and Integrity, as well as many
other RTOSes, rely on user-level servers to provide OS func-
tionality (filesystems, drivers and communication stacks)
and are characterised by a small size1. However, they are
generally conceived as a base to run embedded applications,
not as a foundation for operating systems.

2.1. Microkernels and real-time systems

On the one hand, microkernels are often associated with
real-time systems, probably due to the fact that multime-
dia and embedded real-time applications benefit from their
small footprint, low interrupt latency, and fast interprocess
communication compared to monolithic kernels. On the
other hand, the general-purpose microkernels designed to
serve as bases for workstation and server Unices in the ’90s
were apparently meant to address real-time issues of differ-
ent nature and a coarser scale, as real-time applications (typ-
ically multimedia) compete with many other processes and
must deal with large kernel latency, memory protection and
swapping.

As a microkernel, L4 has intrinsic provisions for
real-time. Memory pagers, being at user-level, support
application-specific policies. A real-time application can ex-
plicitly pin the logical pages that contain time-sensitive code
and data in physical memory, so as to avoid page faults (also
TLB entries should be pinned, though).

The microkernel design principle more helpful for real-
time is user-level device drivers [16]. In-kernel drivers can
disrupt time-critical scheduling by disabling interrupts at ar-
bitrary points in time, for an arbitrary amount of time, or
create deferred workqueues that the kernel will execute at
unpredictable times. Both situations can easily occur, for
example, in the Linux kernel. Interrupt disabling is just one
of the many critical issues for real-time in monolithic ker-
nels. As we will see in Section 4.6, the user-level device
driver model of L4 avoids this problem. Two other L4 fea-
tures intended for real-time support are IPC timeouts, used
for time-based activation of threads (on timeouts see Sec-
tions 3.5 and 4.1), and preempters, handlers for time faults
that receive preemption notification messages.

In general, however, it still remains unclear whether these
second-generation microkernels are well suited for all types
of real-time applications. A first examination of Exokernel
and Nemesis scheduling APIs reveals, for example, that both

1Recall that the ‘micro’ in microkernel refers to its economy of concepts
compared to monolithic kernels, not to its memory footprint.

hardwire scheduling policies that are disastrous for at least
some classes of real-time systems and cannot be avoided
from user level. Exokernel’s primitives for CPU sharing
achieve “fairness [by having] applications pay for each ex-
cess time slice consumed by forfeiting a subsequent time
slice” (see [2], p.32). Similarly, Nemesis’ CPU allocation
is based on a “simple QoS specification” where applications
“specify neither priorities nor deadlines” but are provided
with a “particular share of the processor over some short
time frame” according to a (replaceable) scheduling algo-
rithm. The standard Nemesis scheduling algorithm, named
Atropos, “internally uses an earliest deadline first algorithm
to provide this share guarantee. However the deadlines on
which it operates are not available to or specified by the ap-
plication” [17].

L4, like many RTOSes, contains a priority-based sched-
uler hardwired in the kernel. While this limitation can be
circumvented with some ingenuity via user-level schedul-
ing [13] at the cost of additional context-switches, “all that
is wired in the kernel cannot be modified by higher lev-
els” [21]. As we will see in Section 4, this is exactly the
problem with some L4 optimisations, which, while being
functionally correct, trade predictability and freedom from
policies for performance and simplicity of implementation,
thus creating additional issues that designers must be aware
of, and which time-sensitive systems must address.

3. The L4 microkernel
L4 is a second-generation microkernel that aims at high

flexibility and maximum performance, but without compro-
mising security. In order to be fast, L4 strives to be small
by design [21], and thus provides only the least set of funda-
mental abstractions and the mechanisms to control them: ad-
dress spaces with memory-mapping operations, threads with
basic scheduling and synchronous IPC.

The emphasis of L4 design on smallness and flexibility is
apparent in the implementation of IPC and its use by the mi-
crokernel itself. The basic IPC mechanism is used not only
to transfer messages between user-level threads, but also to
deliver interrupts, asynchronous notifications, memory map-
pings, thread startups, thread preemptions, exceptions and
page faults. Because of its pervasiveness, but especially its
impact on OS performance experienced with first-generation
microkernels, L4 IPC has received a great deal of attention
since the very first designs [18] and continues to be carefully
optimised today [7].

3.1. The L4 microkernel specification

In high-performance implementations of system software
there is an inherent contrast between maximising the perfor-
mance of a feature on a specific implementation of an archi-
tecture and its portability to other implementations or across
architectures. L4 faced these problems when transitioning
from 80486 to the Pentium, and then from Intel to various

RISC, CISC and VLIW 32/64 bit architectures.
L4 addresses this problem by relying on a specification of

the microkernel. The specification is crafted to meet two ap-
parently conflicting objectives. The first is to guarantee full
compatibility and portability of user-level software across
the matrix of microkernel implementations and processor
architectures. The second is to leave to kernel engineers
the maximum leeway in choice of architecture-specific opti-
misations and trade-offs among performance, predictability,
memory footprint, and power consumption.

The specification is contained in a reference manual that
details the hardware-independent L4 API and 32/64 bit ABI,
the layout of public kernel data structures such as the user
thread control block (UTCB) and the kernel information
page (KIP), CPU-specific extensions to control caches and
frequency, and the IPC protocols to handle, among other
things, memory mappings and interrupts at user-level.

In principle, every L4 microkernel implementation
should adhere to the specification. In practice, however,
some deviations can occur. To avoid them, the L4-embedded
specification is currently being used as the base of a regres-
sion test suite, and precisely defined in the context of a for-
mal verification of its implementation.

3.2. The L4 API

L4 evolved over time from the original L4/x86 into a
small family of microkernels serving as vehicles for OS
research and experimentation. In the late ’90s, because
of licensing problems with the then current kernel, the L4
community started the Fiasco [9] project, a variant of L4
that, during its implementation, was made preemptable via
a combination of lock-free and wait-free synchronisation
techniques [10]. Beside preemptability, Fiasco sports a so-
phisticated (but complex) support for a subset of real-time
applications: those composed by strictly periodic tasks [25].

This paper focuses on NICTA::Pistachio-embedded (L4-
embedded), an implementation of the N1 API specifica-
tion [24]. Both the L4-embedded specification and its imple-
mentation are largely based on L4Ka::Pistachio version 0.4
(L4Ka) [14], with special provisions for embedded systems
such as reduced memory footprint of kernel data structures
and some changes to the API that we detail later. In the fol-
lowing, we discuss the features of L4Ka and L4-embedded
that affect the application temporal behavior. Those in-
clude scheduling, synchronous IPC, timeouts, interrupts,
and asynchronous notifications.

3.3. Scheduler

The L4 API specification defines a 256-level, fixed-
priority, round-robin (RR) scheduler. The RR scheduling
policy runs threads in priority order until they block in the
kernel, are preempted by a higher priority thread, or exhaust
their timeslice. The standard length of a timeslice is 10 ms
but can be set between ε (the shortest possible timeslice)

and∞ with the Schedule() system call. If the timeslice is
different from∞, it is rounded to the minimum granularity
allowed by the implementation that, like ε, ultimately de-
pends on the precision of the algorithm used to update it and
to verify its exhaustion (on timeslices see Sections 4.1, 4.4,
and 4.5). Once a thread exhausts its timeslice, it is enqueued
at the end of the list of the running threads of the same pri-
ority, to give other threads a chance to run. RR achieves a
simple form of fairness and, more importantly, guarantees
progress.

FIFO is a scheduling policy closely related to RR that
does not attempt to achieve fairness and thus is somewhat
more appropriate for real-time. As defined in the POSIX
1003.1b real-time extensions [11], FIFO-scheduled threads
run until they relinquish control by yielding to another
thread or by blocking in the kernel. L4 can emulate FIFO
with RR by setting the threads’ priorities to the same level
and their timeslices to ∞. However, a maximum of pre-
dictability is achieved by assigning only one thread to each
priority level.

3.4. Synchronous IPC

L4 IPC is a rendezvous in the kernel between two threads
that partner to exchange a message. To keep the kernel sim-
ple and fast, L4 IPC is synchronous: there are no buffers
or message ports, nor double copies, in and out of the ker-
nel. Each partner performs an Ipc(dest,from_spec,&from)

syscall that is composed of an optional send phase to the
dest thread, followed by an optional receive phase from a
thread specified by the from spec parameter. Each phase
can be either blocking or non-blocking. The parameters
dest and from spec can take values among all standard
thread ids. There are some special thread ids, among which
nilthread and anythread. The nilthread encodes ‘send-only’
or ‘receive-only’ IPCs. The anythread encodes ‘receive
from any thread’ IPCs.

Under the assumptions that IPC syscalls issued by the
two threads cannot execute simultaneously, and that the first
invoker requests a blocking IPC, the thread blocks and the
scheduler runs to pick a thread from the ready queue. The
first invoker remains blocked in the kernel until a suitable
partner performs the corresponding IPC that transfers a mes-
sage and completes the communication. If the first invoker
requests a non-blocking IPC and its partner is not ready (i.e.,
not blocked in the kernel waiting for it), the IPC aborts im-
mediately and returns an error.

A convenience API mandated by the L4 specification
provides wrappers for a number of common IPC patterns
encoding them in terms of the basic syscall. For exam-
ple, Call(dest), used by clients to perform a simple IPC
to servers, involves a blocking send to thread dest, followed
by a blocking receive from the same thread. Once the re-
quest is performed, servers can reply and then block waiting
for the next message using ReplyWait(dest,&from_tid), an

IPC composed of a non-blocking send to dest followed by a
blocking receive from anythread (the send is non-blocking
as typically the caller is waiting, thus the server can avoid to
block trying to send replies to malicious or crashed clients).
To block waiting for an incoming message one can use
Wait(), a send to nilthread and a blocking receive from
anythread. As we will see in Section 4.4, for performance
optimisations the threads that interact in IPC according to
some of these patterns are scheduled in special (and sparsely
documented) ways.

L4Ka supports two types of IPC: standard IPC and long
IPC. Standard IPC transfers a small set of 32/64-bit mes-
sage registers residing in the thread’s UTCB, which is al-
ways mapped in physical memory. Long IPC transfers larger
objects, like strings, that can reside in arbitrary, potentially
unmapped, places of memory. Long IPC has been removed
from L4-embedded because it can pagefault and, on non-
preemptable kernels, block interrupts and the execution of
other threads for a large amount of time (see Section 4.6).

3.5. IPC Timeouts

IPC with timeouts cause the invoker to block in the ker-
nel until either the specified amount of time has elapsed or
the partner completes the communication. Timeouts were
originally intended for real-time support, and also as a way
for clients to recover safely from the failure of servers by
aborting a pending request after few seconds (but a good
way to determine suitable timeout values was never found).
Timeouts are also used by the Sleep() convenience func-
tion, implemented by L4Ka as an IPC to the current thread
that times out after the specified amount of microseconds.
Since IPC timeouts unnecessarily complicate the kernel and
more accurate alternatives can be implemented at user level,
they have been removed from L4-embedded.

3.6. User-level interrupt handlers

L4 delivers a hardware interrupt as a synchronous IPC
message to a normal user-level thread which registered with
the kernel as the handler thread for that interrupt. The in-
terrupt messages appear to be sent by special in-kernel in-
terrupt threads set up by L4 at registration time, one per
interrupt. Each interrupt message is delivered to exactly one
handler, however a thread can be registered to handle dif-
ferent interrupts. The timer tick interrupt is the only one
managed internally by L4.

The kernel handles an interrupt by masking it in the inter-
rupt controller (IC), preempting the current thread and per-
forming a sequence of steps equivalent to an IPC Call()

from the in-kernel interrupt thread to the user-level handler
thread. The handler runs in user-mode with its interrupt dis-
abled, but the other interrupts enabled, and thus it can be
preempted by higher-priority threads, which possibly, but
not necessarily, are associated with other interrupts. Finally,
the handler signals that it finished servicing the request with

a Reply() to the interrupt thread, that will then unmask the
associated interrupt in the IC.

3.7. Asynchronous notification

Asynchronous notification is a new L4 feature introduced
in L4-embedded, not present in L4Ka. It is used by a sender
thread to notify a receiver thread of an event. While imple-
mented via the IPC syscall, notification is neither blocking
for the sender, nor requires the receiver to block waiting for
the notification to happen. Each thread has 32 (64 on 64-bit
systems) notification bits. The sender and the receiver must
agree beforehand on the semantics of the event, and which
bit signals it. When delivering asynchronous notification,
L4 does not report the identity of the notifying thread: un-
like in synchronous IPC, the receiver is only informed of the
event.

4. L4 and real-time systems
The fundamental abstractions and mechanisms provided

by the L4 microkernel are implemented with data structures
and algorithms chosen to achieve speed, compactness and
simplicity, but often disregarding other non-functional as-
pects, such as timeliness and predictability, which are criti-
cal for real-time systems.

In the following, we highlight the impact of some aspects
of the L4 design and its implementations (mainly L4Ka and
L4-embedded, but also their ancestors), on the temporal be-
haviour of L4-based systems, and the degree of control that
user-level software can exert over it in different cases.

4.1. Timer tick interrupt

The timer tick is a periodic timer interrupt that the ker-
nel uses to perform a number of time-dependent opera-
tions. On every tick, L4-embedded N1 and L4Ka subtract
the tick length from the remaining timeslice of the current
thread and preempt it if the result is less than zero (List-
ing 1). In addition, L4Ka also inspects the wait queues for

void scheduler_t :: handle_timer_interrupt () {
...
/* Check for not infinite timeslice and expired */
if ((current ->timeslice_length != 0) &&
((get_prio_queue(current)->current_timeslice

-= get_timer_tick_length ()) <= 0))
{

// We have end -of - timeslice.
end_of_timeslice (current);

}
...

Listing 1. L4 kernel/src/api/v4/schedule.cc

threads whose timeout has expired, aborts the IPC they were
blocked on and marks them as runnable. On some platforms
L4Ka also updates the kernel internal time returned by the
SystemClock() syscall. Finally, if any thread with a prior-
ity higher than the current one was woken up by an expired

timeout, L4Ka will switch to it immediately.
Platform-specific code sets the timer tick at kernel ini-

tialisation time. Its value is observable (but not change-
able) from user space in the SchedulePrecision field of the
ClockInfo entry in the KIP. The current values for L4Ka and
L4-embedded are in Table 1.

In principle the timer tick is a kernel implementation de-
tail that should be irrelevant for applications. In practice its
granularity influences, in a number of observable ways, their
temporal behaviour. As a consequence, all other things be-
ing equal, the actual fine-grained temporal behaviour of an
L4-based system is essentially platform-dependent.

For example, while the API expresses the IPC timeouts,
timeslices and Sleep() durations in microseconds, their ac-
tual accuracy depends on the tick period. A timeslice of
2000 µs lasts 2 ms on SPARC, PowerPC64, MIPS and IA-
64, nearly 3 ms on Alpha, nearly 4 ms on IA-32, AMD64
and PowerPC32, and finally 10 ms on ARM (but 5 ms in
L4-embedded running on StrongARM). Similarly, the reso-
lution of SystemClock() is equal to the tick period (1–10
ms) on most architectures, except for IA-32, where it is
based on the timestamp counter (TSC) register that incre-
ments with CPU clock pulses. Section 4.5 discusses other
consequences.

Version Architecture Timer tick (µs)
L4-embedded N1 XScale 10000
L4-embedded N1 StrongARM 5000
L4::Ka Pistachio 0.4 Alpha 976
L4::Ka Pistachio 0.4 AMD64 1953
L4::Ka Pistachio 0.4 IA-32 1953
L4::Ka Pistachio 0.4 PowerPC32 1953
L4::Ka Pistachio 0.4 Sparc64 2000
L4::Ka Pistachio 0.4 PowerPC64 2000
L4::Ka Pistachio 0.4 MIPS64 2000
L4::Ka Pistachio 0.4 IA-64 2000
L4::Ka Pistachio 0.4 StrongARM/XScale 10000

Table 1. Timer tick periods.

Timing precision is an issue common to most operating
systems and programming languages, as timer tick resolu-
tion used to be ‘good enough’ for most time-based operat-
ing systems functions, but clearly is not for real-time and
multimedia applications. In the case of L4, a precise imple-
mentation would simply reprogram the timer for the earliest
timeout or end-of-timeslice, or read it when providing the
current time. However, in most cases timer IO registers are
located outside the CPU core and accessing them is a costly
operation that would have to be performed in the IPC path if
a thread blocks with a timeout, and on each context switch.

L4-embedded avoids most of these issues by removing
support for IPC timeouts and the SystemClock() syscall
from the kernel, and leaving the implementation of precise
timing services to user level. This also makes the kernel

faster by reducing the amount of work done in the IPC path
and on each tick. Timer ticks consume energy, thus will
likely be removed in future versions of L4-embedded, or
made programmable based on the timeslice.

4.2. IPC and priority-driven scheduling

Being synchronous, IPC causes priority inversion in real-
time applications programmed incorrectly, as described in
the following scenario. A high priority thread A performs
IPC to a lower priority thread B, but B is busy, so A blocks
waiting for it to partner in IPC. Before B can perform the
IPC that unblocks A, a third thread C with priority between
A and B becomes ready, preempts B and runs. As the
progress of A is impeded by C, which runs in its place de-
spite having a lower priority, this is a case of priority inver-
sion.

Since priority inversion is a classic real-time bug,
RTOSes contain special provisions to alleviate its ef-
fects [12]. Among them are priority inheritance (PI) and
priority ceiling (PC), both discussed in detail by Liu in [23];
Yodaiken [26] discusses the cons of PI. In order to support
PI in L4, IPC and scheduling mechanisms must be extended
to track temporary dependencies established during block-
ing IPCs from higher to lower priority threads, shuffle prior-
ities accordingly, resume execution, and restore them once
IPC completes. Since an L4-based system executes thou-
sands of IPCs per second, the introduction of systematic
support for PI would also impose a fixed cost on non-real-
time threads, leading to a significant impact on overall sys-
tem performance.

Elphinstone [1] proposed an alternative solution based on
statically structuring the threads and their priorities in such a
way that a high-priority thread never performs a potentially
blocking IPC with a lower priority busy thread. While this
solution fits better with the L4 static priority scheduler, it re-
quires a special arrangement of threads and their priorities
which may or may not be possible in all cases. To work
properly in some corner cases it also requires keeping the
messages on the incoming queue of a thread sorted by the
static priority of their senders. These changes, just like the
ones necessary for PI, slow down the critical IPC path, com-
plicate the kernel implementation, and have not been imple-
mented. An efficient solution that does not require sorting is
under evaluation, to be implemented in future L4-embedded
kernels.

A better solution to the problem of priority inversion is to
encapsulate critical sections in server threads. If the server
thread is assigned the priority of the highest thread which
may call it, it will implement the PC protocol at little or no
extra cost. Caveats for this solution are ordering of incoming
calls to the server thread and some of the issues discussed in
Section 4.4, but overall they require only a fraction of the
cost of implementing PI.

4.3. Scheduler

The main issue with the L4 scheduler is that it is hard-
wired both in the specification and the implementation.
While fine for most applications, sometimes it might be con-
venient to perform scheduling decisions at user level, feed
the scheduler with application hints, or replace it with differ-
ent one, e.g., deadline-driven or time-driven. Unfortunately
the API does not support any of them.

Yet, the basic idea of microkernels is to provide appli-
cations with mechanisms and abstractions sufficiently ex-
pressive to build the required functionality at user level. Is
it therefore possible, modulo the priority inheritance issues
discussed in Section 4.2, to perform priority-based real-time
scheduling just relying on the standard L4 scheduler? Yes,
but only if two optimisations common across most L4 mi-
crokernel implementations are taken into consideration: the
short-circuiting of the scheduler by the IPC path, and the
simplistic implementation of timeslice donation. Both are
discussed in the next two sections.

4.4. IPC and scheduling policies

L4 invokes the standard scheduler to determine which
thread to run next when, for example, the current thread per-
forms a yield with the ThreadSwitch(nilthread) syscall,
exhausts its timeslice, or blocks in the IPC path waiting for
a busy partner. But a scheduling decision is also required
when the partner is ready and, as a result, at the end of the
IPC more than one thread can run. Which thread should
be chosen? A straightforward implementation would just
change threads’ state to runnable, move them to the ready
list, and invoke the scheduler. The problem with this is, of
course, that it incurs a significant cost along the IPC critical
path.

L4 minimises the amount of work done in the IPC path
with two complementary optimisations. First, the IPC path
makes scheduling decisions without running the scheduler.
Typically it switches directly to one of the ready threads ac-
cording to policies that possibly, but not necessarily, take
into account their priorities. Second, it marks as non-
runnable a thread that blocks in IPC, but defers its removal
from the ready list to save time. The assumption is that
it will soon resume, woken up by an IPC from its partner.
When the scheduler eventually runs and searches the ready
list for the highest-priority runnable thread, it also moves
any blocked thread it encounters into the waiting queue. The
first optimisation is called direct process switch, the second
lazy scheduling; Liedke [18] provides more details.

As resuming a thread in the ready queue is slightly faster
than one in the waiting queue, lazy scheduling has only
second-order effects in scheduling, and as such we will not
discuss it further. Direct process switch, instead, has a sig-
nificant influence on scheduling of priority-based real-time
threads, but since it is seen primarily as an optimisation to

Situation When/where applied Scheduling policy switch to(...)
ThreadSwitch (to) application syscall timeslice donation to
ThreadSwitch (nilthread) application syscall scheduler (highest pri. ready)
End of timeslice (typically 10 ms) timer tick handler runs scheduler scheduler (highest pri. ready)
send(dest) blocks (no partner) ipc send phase runs scheduler scheduler (highest pri. ready)
recv(from) blocks (no partner) ipc recv phase runs scheduler scheduler (highest pri. ready)
send(dest) [Send()] ipc send phase direct process switch maxpri(current, dest)
send(dest) [Send()] L4/MIPS ipc send phase timeslice donation dest
send(dest) [Send()] L4/MIPS* ipc send phase (arbitrary) current
recv(from) [Receive()] ipc recv phase timeslice donation from
send(dest)+recv(dest) [Call()] ipc send phase timeslice donation dest
send(dest)+recv(anythread) [ReplyWait()] ipc recv phase direct process switch maxpri (dest, anythread)*
send(dest)+recv(from) ipc recv phase direct process switch maxpri (dest, from)
Kernel interrupt path handle interrupt() direct process switch maxpri(current, handler)
Kernel interrupt path handle interrupt()* timeslice donation handler
Kernel interrupt path irq thread() completes Send() timeslice donation handler
Kernel interrupt path irq thread(), irq after Receive() (as handle interrupt()) (as handle interrupt())
Kernel interrupt path L4-embedded irq thread(), no irq after Receive() scheduler (highest pri. ready)
Kernel interrupt path L4Ka irq thread(), no irq after Receive() (arbitrary) idle thread

Table 2. Scheduling policies in L4 microkernels (* = see text).

avoid running the scheduler, the actual policies are sparsely
documented, and missing from the L4 specification.

We have therefore analysed the different policies em-
ployed in L4-embedded and L4Ka, reconstructed the mo-
tivation for their existence (that in some cases changed as
L4 evolved), and summarised our findings in Table 2 and
the following paragraphs. In the descriptions, we adopt this
convention: ‘A’ is the current thread, that sends to the dest
thread ‘B’ and receives from the from thread ‘C’. The policy
applied depends on the type of IPC performed:

Send() at the end of a send-only IPC two threads can be
run: the sender A or the receiver B; the current policy
respects priorities and is cache-friendly, so it switches to
B only if it has higher priority, else continues with A.

Receive() thread A that performs a receive-only IPC from
C results in a direct transfer of control to C.

Call() client A that performs a call IPC to server B results
in a direct switch of control to B.

ReplyWait() server A that responds to client B, and at the
same time receives the next request from client C, results
in a direct switch of control to B only if it has a strictly
higher priority than C, otherwise control switches to C.

Each policy meets a different objective. In Send() it
strives to follow the scheduler policy: the highest priority
thread runs — in fact it only approximates it, as sometimes
A may not be the highest priority runnable thread (e.g., be-
cause of timeslice donation: see Section 4.5). In the other
cases, the policies at the two sides of the IPC cooperate to
favour brief IPC-based thread interactions over the standard
thread scheduling by running the ready IPC partner on the
timeslice of the current thread (also for this see Section 4.5).

Complex behaviour Complex behaviour can emerge
from these policies and their interaction. As the IPC path
copies the message from sender to receiver in the final part
of the send phase, when B receives from an already blocked
A, the IPC will first switch to A’s context in the kernel. How-
ever, once it has copied the message, the control may or may
not immediately go back to B. In fact, because of the IPC
policies, what will actually happen depends on the type of
IPC A is performing (send-only, or send+receive), which of
its partners are ready, and their priorities.

A debate that periodically resurfaces in the L4 commu-
nity revolves around the policy used for the ReplyWait()

IPC (actually the policy applies to any IPC with a send phase
followed by a receive phase, of which ReplyWait() is a case
with special arguments). If both B and C can run at the
end of the IPC, and they have the same priority, the current
policy arbitrarily privileges C. One effect of this policy is
that a loaded server, once active, although keeps servicing
requests, limits the progress of the clients that were served
and could resume execution. A number of alternative solu-
tions that meet different requirements are under evaluation
to be implemented in next versions of L4-embedded.

Temporary priority inversion In the Receive() and
Call() cases, if A has higher priority than C, the threads
with intermediate priority between A and C will not run
until C blocks, or ends its timeslice. Similarly, in the
ReplyWait() case, if A has higher priority than the thread
that runs (either B or C, say X), other threads with interme-
diate priority betweeen them will not run until X blocks, or
ends its timeslice. In all cases, if the intermediate threads
have a chance to run before A’s IPC terminates, they gen-
erate temporary priority inversion for A (this is the same
real-time application bug discussed in Section 4.2).

Software evolution With respect to software evolution,
it is interesting to look at how the policies change over
time to meet different requirements. Today, to mantain a
uniform behaviour between the standard IPC path and the
ARM’s IPC fastpath (a hand-optimised architecture-specific
version of the IPC path invoked in special, faster cases), the
ReplyWait() policy in the standard path has been changed
to reflect the policy implemented in the fastpath. Once the
fastpath is re-implemented correctly, the standard path may
be returned to the standard policy.

4.5. Timeslice donation

An L4 thread can donate the rest of its timeslice to
another thread, performing the so-called timeslice dona-
tion [5]. The thread receiving the donation (recipient) runs
briefly: if it does not block earlier, it runs ideally until the
donor timeslice ends. Then the scheduler runs and applies
the standard scheduling policy that may preempt the recipi-
ent and run another thread of intermediate priority between
it and the donor that was ready to run since before the dona-
tion.

L4 timeslice donations can be explicit or implicit. Ex-
plicit timeslice donations are performed by applications with
the ThreadSwitch(to_tid) syscall. Implicit timeslice dona-
tions happen in the kernel when the IPC path (or the inter-
rupt path, see Section 4.6) transfers control to a thread that
is ready to rendezvous. Note, however, that even though
implicit timeslice donation and direct process switch com-
bine in IPC, they have very different purposes. Direct pro-
cess switch optimises scheduling in the IPC critical path.
Timeslice donation favours threads interacting via IPC over
standard scheduling. Table 2 summarises the instances of
timeslice donation found in L4Ka and L4-embedded.

This is the theory. In practice in both L4Ka and L4-
embedded a timeslice donation will not result in the recipi-
ent running for the rest of the donor timeslice. Rather, it will
run at least until the next timer tick, and at most for its own
timeslice, before it is preempted and normal scheduling is
restored. The actual timeslice of the donor is not considered
at all in determining how long the recipient runs.

This manifest deviation from what is stated in the L4
specification (and implied by the established term ‘timeslice
donation’) is a known bug, due to a simplistic implementa-
tion of timeslice accounting. In fact, as discussed in Section
4.1 and shown in Listing 1, the scheduler function called
by the timer tick handler simply decrements the timeslice of
the current thread. It neither keeps track of the donation it
may have received, nor does it propagate them in case do-
nations are nested. In other words, what currently happens
upon timeslice donation in L4Ka and L4-embedded is better
characterised as limited timer tick donation. The current ter-
minology could be explained by earlier L4 versions which
had timeslices and timerticks of coinciding lengths. Fiasco
correctly donates timeslices at the price of a significantly

more complex implementation that we cannot discuss here
for space reasons.

The main consequence of timeslice donation is the tem-
porary change of scheduling semantics. The other conse-
quences depend on the relative length of donor timeslices
and timer tick. If both threads have a normal timeslice and
the timer tick is set to the same value, the net effect is just
about the same. If the timer tick is shorter than the donor
timeslice, what gets donated is statistically much less, and
definitely platform-dependent (see Table 1). The different
lengths of the donations on different platforms can resonate
with particular durations of computations, and result in oc-
casional large differences in performance which are difficult
to explain. For example the performance of IO devices (that
may deliver time-sensitive data, e.g., multimedia) decreases
dramatically if the handlers of their interrupts are preempted
before finishing and resumed after few timeslices. Whether
this will happen or not can depend on the duration of a dona-
tion from a higher priority interrupt dispatcher thread. Dif-
ferent lengths of the donations can also conceal or reveal
race conditions and priority inversions caused by IPC (see
Section 4.4). Finally, a timeslice of∞ cannot be donated.

4.6. Interrupts

In general, the causes of interrupt-related glitches are the
most problematic to find and most costly to solve. Some of
them result from subtle interactions between how and when
the hardware architecture generates interrupt requests and
how and when the kernel or a device driver decides to mask
or handle them. For these reasons, in the following para-
graphs we will first briefly summarise the aspects of inter-
rupts critical for real-time systems, then we will discuss how,
in detail, L4 manages interrupts, and finally the implications
for L4-based real-time systems design.

In a real-time system, interrupts have two critical roles.
First, when triggered by timers, they mark the passage of
real time and specific instants when time-critical operations
should be started or stopped. Second, when triggered by
peripherals or sensors in the environment, they inform the
CPU of asynchronous events that require immediate consid-
eration for the correct functioning of the system. Delays in
interrupt handling can lead to jitter in time-based operations,
missed deadlines, and the lateness or loss of time-sensitive
data.

Unfortunately, in many systems both drivers and the ker-
nel itself can directly or indirectly disable interrupts (or just
pre-emption, which has a similar effect on time-sensitive ap-
plications) at unpredictable times, and for arbitrarily long
times. Interrupts are disabled not only to mantain the consis-
tency of shared data structures, but also to avoid deadlocks
when taking spinlocks and to avoid unbounded priority in-
versions in critical sections. Handlers that manipulate hard-
ware registers according to strictly timed protocols disable
all interrupts in the system.

L4 interrupts As introduced in Section 3.6, L4 converts
all interrupts (but the timer tick) into IPC messages, which
are sent to a user-level thread that will handle them. The in-
ternal interrupt path comprises of three routines: the generic
irq_thread(), the generic handle_interrupt(), and a low-
level, platform-specific handler that manages the IC.

When L4 receives an interrupt, the platform-specific han-
dler disables it in the IC and calls handle_interrupt(),
which creates an interrupt IPC message and, if the user-
level handler is not waiting for it, enqueues the message in
the handler’s message queue, marks the in-kernel interrupt
thread runnable (we will see its role shortly), and returns
to the current (interrupted) thread. If instead the handler is
waiting, and the current thread is the interrupt kernel thread
or the idle thread, handle_interrupt() switches directly to
the handler, performing a timeslice donation. Finally, if the
handler is waiting and the current thread was neither the
interrupt thread nor the idle thread, it does direct process
switch and switches to the handler only if it has higher pri-
ority than the current thread, else moves the interrupt thread
in the ready queue, and switches to the current thread, like
the IPC path does for a Send() (see Sections 4.4 and 4.5).

The in-kernel interrupt thread executes irq_thread(), a
simple endless loop that performs two actions in sequence.
It delivers a pending message to a user-level interrupt han-
dler that became ready to receive, and then blocks waiting
to receive its reply when it processed the interrupt. When
it arrives, irq_thread() re-enables the interrupt in the IC,
marks itself halted and, if a new interrupt is pending, calls
handle_interrupt() to deliver it (which will suspend the
interrupt thread and switch to the handler, if it is waiting).
Finally, it yields to another ready thread (L4-embedded) or
the idle thread (L4Ka). In other words, the interrupt path
mimics a Call() IPC. The bottom part of Table 2 sum-
marises the scheduling actions taken by the interrupt paths
of the L4Ka and L4-embedded microkernels.

Advantages In L4-based systems, only the microkernel
has the necessary privileges to enable and disable interrupts
globally in the CPU and selectively in the interrupt con-
troller. All user-level code, including drivers and handlers,
has control only over the interrupts it registered for, and can
disable them only either by simply not replying to an inter-
rupt IPC message, or by de-registering altogether, but cannot
mask any other interrupt or all of them globally (except by
entering the kernel, that currently disables interrupts).

An important consequence of these facts is that L4-based
real-time systems do not need to trust drivers and handlers
time-wise, since they cannot programmatically disable all
interrupts or preemption. More importantly, at user-level,
mutual exclusion between a device driver and its interrupt
handler can be done using concurrency-control mechanisms
that do not disable preemption or interrupts like spinlocks
must do in the kernel. Therefore, user-level driver–handler

synchronisations only have a local effect, and thus neither
unpredictably perturb the timeliness of other components of
the system, nor contribute to its overall latency.

Another L4 advantage is the unification of the scheduling
of applications and interrupt handlers. Interrupts can nega-
tively impact the timeliness of a system in different ways,
but, at least for the most common ones, L4 allows simple
solutions. A typical issue is the long-running handler, either
because it is malicious, or simply badly written as it is of-
ten the case. Even if it cannot disable interrupts, it can still
starve the system by running as the highest priority ready
thread. A simple remedy to bound its effects is to have it
scheduled at the same priority as other threads, if necessary
tune its timeslice, and rely on L4’s round-robin scheduling
policy that ensures global progress (setting its priority lower
than other threads would unfairly starve the device).

A second issue is that critical real-time threads must not
be delayed by less important interrupts. In L4, low-priority
handlers cannot defer higher priority threads by more than
the time spent by the kernel to receive each user-registered
interrupt once and queue the IPC message. Also the periodic
timer tick interrupt contributes to delaying the thread, but for
a bounded and reasonably small amount of time.

Consider, finally, thrashing caused by interrupt overload,
where the CPU spends all its time handling interrupts and
nothing else. L4 prevents this by design since, after an inter-
rupt has been handled, it is the handler, and not the micro-
kernel that decides if and when to handle the next pending
interrupt. In this case, even if the handler runs for too long
because it has no provision for overload, it can still be throt-
tled via scheduling as discussed above.

Notably, in all these cases it is not necessary to trust
drivers and handlers to guarantee that interrupts will not dis-
rupt in one way or another the timeliness of the system. In
summary, running at user-level makes interrupt handlers and
device drivers positively constrained, in the sense that their
behaviour — as opposed to the in-kernel ones — cannot af-
fect the OS and applications beyond what is allowed by the
protection and scheduling policies set for the system.

Disadvantages Two drawbacks of L4 interrupts for real-
time systems are interrupt latency and non-preemptable ker-
nel. The interrupt latency is the time between when the in-
terrupt is asserted by the peripheral and the first instruction
of its handler is executed. The latency is higher for L4 user-
level handlers than for traditional in-kernel ones since, even
in the best case scenario, more code runs and an additional
context switch is performed. Besides, even if thoroughly op-
timised, L4 (like many RTOSes) does not provide specific
real-time guarantees, neither for its API in general, nor for
IPC in particular. Therefore, interrupt latency in L4 is not
precisely characterised yet.

Both kernel preemptability and latency are currently con-
sidered by researchers and developers. The current imple-

mentation of L4Ka disables interrupts while in kernel mode.
Since in the vast majority of cases the time spent in the ker-
nel is very short, especially if compared to monolithic ker-
nels, and preempting the kernel has about the same cost as a
fast system call, L4-embedded developers maintain that the
additional complexity of making it completely pre-emptable
is not justified. However, the L4Ka kernel takes a very long
time to ‘unmap’ a set of deeply nested address spaces, and
this increases both the interrupt and the preemption worst-
case latencies. For this reason, in L4-embedded the vir-
tual memory system has been reworked to move part of the
memory management to user level, and introduce preemp-
tion points where interrupts are enabled in long-running ker-
nel operations. With respect to latency, an ongoing research
project aims, among other things, at precisely characterising
the L4 interrupt latency via a detailed timing analysis of the
kernel.

5. Conclusions
We conclude that real-time programming on top of L4-

embedded is facilitated by a number of design features
unique to microkernels and L4 itself, provided that pro-
grammers are aware of some of its implementation details,
and take appropriate measures for the case at hand. How-
ever, a review of the current tradeoffs between performance
and predictability that L4-embedded inherited from L4Ka’s
extreme optimisations would ease priority-driven real-time
scheduling. Future work will explore the applicability of
other real-time scheduling paradigms to L4. In particular
we aim to exploit the very same L4 optimisations to realise
accurate and deterministic real-time schedulers that do not
require any changes to the microkernel itself, and thus do
not impact on its performance.

Acknowledgments
The author wants to thank Peter Chubb, Dhammika Elkaduwe,

Kevin Elphinstone, Gernot Heiser, Ihor Kuz, Geoffrey Lee, God-
frey van der Linden, David Mirabito, Stefan Petters, Daniel Potts,
Marco Ruocco, Leonid Ryzhyk, Carl van Schaik, Matthew Warton
and the anonymous reviewers. Their feedback improved both the
content and style of this paper.

References
[1] K. Elphinstone. Resources and Priorities. In K. Elphinstone,

editor, 2nd Workshop on Microkernels and Microkernel-
based Systems, Lake Louise, Alta, Canada, Oct 2001.

[2] D. Engler. The Exokernel operating system architecture.
Ph.D. Thesis, Massachusetts Institute of Technology, 1999.

[3] D. R. Engler and M. F. Kaashoek. Exterminate all operating
system abstractions. In 5th HotOS, Orcas Island, WA, USA,
May 1995.

[4] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exoker-
nel: An operating system architecture for application-level
resource management. In 15th SOSP, pages 251–266, Cop-
per Mountain, CO, USA, Dec 1995.

[5] B. Ford and S. Susarla. CPU Inheritance Scheduling. In
Usenix Association Second Symposium on Operating Systems
Design and Implementation (OSDI), pages 91–105, 1996.

[6] D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an
application program. In 1990 Summer USENIX Techn. Conf.,
Jun 1990.

[7] C. Gray, M. Chapman, P. Chubb, D. Mosberger-Tang, and
G. Heiser. Itanium — a system implementor’s tale. In 2005
USENIX Techn. Conf., pages 264–278, Anaheim, CA, USA,
Apr 2005.

[8] D. Hildebrand. An architectural overview of QNX. In
USENIX Workshop on Microkernels and Other Kernel Archi-
tectures, pages 113–126. USENIX, 1992.

[9] M. Hohmuth. The Fiasco kernel: requirements definition.
Technical Report TUD-FI98-12, Dec 1998.

[10] M. Hohmuth and H. Härtig. Pragmatic nonblocking synchro-
nization for real-time systems. In 2001 USENIX Techn. Conf.,
Boston, MA, USA, 2001.

[11] ISO/IEC. The POSIX 1003.1 Standard. 1996. [FIXME]
ISBN 1-55937-061-0; 1996 revision of POSIX.1; includes
POSIX.1(1990), POSIX.1b(1993), POSIX.1c(1995), and
POSIX.1i(1995).

[12] M. Jones. What really happened on Mars Rover Pathfinder.
The Risks Digest, 19, 1997. Based on David Wilner’s keynote
address of 18th IEEE Real-Time Systems Symposium (RTSS
’97), Dec 3-5, 1997, San Francisco, CA, USA. http://catless.
ncl.ac.uk/Risks/19.49.html.

[13] J. Kamada, M. Yuhara, and E. Ono. User-level realtime
scheduler exploiting kernel-level fixed priority scheduler. In
Multimedia Japan, Mar 1996.

[14] L4Ka Team. L4Ka::Pistachio kernel. http://l4ka.org/
projects/pistachio/.

[15] P. S. Langston. Report on the workshop on micro-kernels and
other kernel architectures, Apr 1992. http://www.langston.
com/Papers/uk.pdf.

[16] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved performance.
J. Comput. Sci. & Technol., 20(5):654–664, Sep 2005.

[17] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. T. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and im-
plementation of an operating system to support distributed
multimedia applications. IEEE Journal of Selected Areas in
Communications, 14(7):1280–1297, 1996.

[18] J. Liedtke. Improving IPC by kernel design. In 14th SOSP,
pages 175–88, Asheville, NC, USA, Dec 1993.

[19] J. Liedtke. A persistent system in real use: Experience of the
first 13 years. In 3rd IWOOOS, pages 2–11, Asheville, NC,
USA, Dec 1993. IEEE.

[20] J. Liedtke. On µ-kernel construction. In 15th SOSP, pages
237–250, Copper Mountain, CO, USA, Dec 1995.

[21] J. Liedtke. µ-Kernels must and can be small. In 5th IWOOOS,
pages 152–161, Seattle, WA, USA, Oct 1996. IEEE.

[22] J. Liedtke. Towards real microkernels. CACM, 39(9):70–77,
Sep 1996.

[23] J. W.-S. Liu. Real-Time Systems. Prentice-Hall, 2000.
[24] National ICT Australia. NICTA L4-embedded Kernel Refer-

ence Manual Version N1, Oct 2005. http://ertos.nicta.com.
au/Software/systems/kenge/pistachio/refman.pdf.

[25] U. A. Steinberg. Quality assuring scheduling. Diploma the-
sis, Dresden University of Technology, Mar 2004.

[26] V. Yodaiken. Against priority inheritance. Available at http:
//www.fsmlabs.com/against-priority-inheritance.html.

