
Issues in Analysing L4 for its WCET

Mohit Singal† Stefan M. Petters‡♦

† Computer Science and
Engineering, IIT Guwahati

Assam, India

♦National ICT Australia∗

Sydney, Australia

‡ School of Computer Science
and Engineering, UNSW

Sydney, Australia

Abstract

Real-time analysis of a system requires knowledge of
the worst-case execution time of all code in the system.
This requirement covers not only application code, but
also operating system and kernel code. In this paper we
discuss the issues specific to kernel code and how we
aim to address these in our work towards analysing the
L4 microkernel for the worst-case execution times of all
system-call primitives. The main focus in that process
is to maximise the degree of automation of the analysis,
as the analysis needs to be repeated for any subsequent
version of the kernel.

1 Introduction

Embedded real-time systems are becoming in general
increasingly complex. While simple systems remain
numerous, the number of more complex high end em-
bedded systems is steadily growing and their com-
plexity makes the use of a realtime operating system
(RTOS) more or less mandatory. Even more, robust-
ness requirements and the integration of functionality
formerly implemented on a set of loosely coupled CPUs
onto a single chip both require memory protection sim-
ilar to a desktop or server system. The assumptions of
the work in worst-case execution time (WCET) analysis
have mostly been focused on the application domain.
This involves, for example, the assumption of planar
code or requirements of universal knowledge of mem-
ory accesses. ThePotorooproject we have embarked
in aims to analyse the NICTA developed version of L4
microkernel N1 embedded API. To avoid any confusion
we will denote the L4 kerenel in NICTA N1 embedded
API L4 N1throughout the paper.

∗National ICT Australia is funded by the Australian Government’s
Department of Communications, Information Technology, and the
Arts and the Australian Research Council through Backing Aus-
tralia’s Ability and the ICT Research Centre of Excellence programs.

In embedded systems, this kernel is mainly targeted
for mission critical and consumer electronics systems.
This paper discusses the issues, that need to be solved
for this specific kernel. It also examines if and how
these issues might be addressed by related work.

While Potoroo aims to be laregly target independent,
the analysis is currently performed on an ARM [1] pro-
cessor based platform and some of the issues reported
are specific to the ARM architecture. The choice of
ARM is mainly driven by the use ofL4 N1. While ports
to other architectures exist, the ARM port of this ker-
nel is the most progressively developed. However, the
processors implementing the ARM architecture do ex-
hibit many of the problems experienced on other archi-
tectures and thus is a good reference point for this and
future work.

To our knowledge Colin and Puaut [2] published the
only other work addressing the WCET analysis of an
operating system kernel, in their case the RTEMS ker-
nel. However, RTEMS does not provide the memory
protection offered byL4 N1 and their work did not
cover the entire kernel. Our work aims to cover all
runtime relevant parts of theL4 N1 kernel and aims
to provide an environment which allows the WCET
analysis for a given hardware platform outside the aca-
demic lab environment. Mehnert et al. [3] have looked
into the cost of address spaces, but have not fundamen-
tally addressed the issue of WCET analysis of the ker-
nel. Commercially available kernels are sometimes de-
livered with representative sample execution times for
some kernel primitives on a give platform. However,
these execution times are always expressively exempted
from being in any way guaranteed.

The next section will briefly introduce our approach
to WCET analysis. Section 3 digs into a detailed analy-
sis of the issues we have encountered during our effort
to analyseL4 N1. Finally Sections 4 and 5 conclude the
paper with an outlook into future work and a summary
of the papers findings.

2 WCET Approach

Many issues will be explained in the context of our
WCET approach. As such we consider it helpful to
briefly introduce our approach and toolset prior to ac-
tually discussing the issues experienced during analysis
so far.

Our approach is measurement based, but instead of
using the end-to-end measurements and safety factors
common in industry, we use measurements obtained on
the basic-block level together with a tree and a tim-
ing schema to compute the WCET of the kernel prim-
itives. Using the tree allows us to implicitly cover any
possible path through a kernel primitive, thus ensuring
that WCET is not underestimated based on the path
executed. Opposed to end-to-end measurements basic
blocks exhibit their respective WCET much more eas-
ily, as the numbers of different execution times is for
a basic block are usually much smaller due to a lim-
ited number of variation causing input states and cache
misses. However, in order to provide guarantees that
the WCET has been observed on the basic-block level
we are also working on a static analysis approach [4].
Within this work we are aiming to establish the number
of cache misses which could and should be observed
during the measurements performed and compare the
results obtained by static analysis with the measure-
ments. The base line is to avoid detailed hardware mod-
elling, but rather to stick to first order effects like cache
misses in order to keep the static analysis light weight.

Our toolset is depicted in Figure 1. In terms of
building blocks it is very similar to the pWCET toolset
used by Colin et al. [5, 6]. The major difference is a
shift in associating the computational weight in terms of
WCET onto the edges of the control flow graph (CFG)
rather than the nodes used in the previous work. This
increases accuracy of the analysis by separating effects
caused for example by a branch prediction unit into sep-
arate entities. However, more important for our work
are the changes in the subsequent tree representation
and timing schema, which allow us to deal efficiently
with non well-structured code.

The kernel binary image is the base for our analysis.
By analysing primarily from the compiled and linked
executable, we avoid second guessing the effects of the
compiler. The generation of traces from the executable
may either be intrusive via instrumentation code added
to the executable or non intrusive, via hardware sup-
ported tracing mechanisms or cycle accurate simula-
tions. Whenever available hardware supported tracing
will be used, as it is non-intrusive and is not subject to
the question of whether the simulator matches 100 %
the hardware.

GNU
objdump

Computation

Executable

Traceparser

computed
ETPs

measured
ETPs

Traces
ExecutionExecution/

Simulation

CFG2Tree

CFG.xml

CTree.xml

Structural
Analysis

disassembled
Objectcode

Sourcecode

Goanna

Figure 1: Toolchain Overview

The extraction of a control-flow graph (CFG) from
the kernel binary image is split into three steps. In a
first stepobjdump from GNU binutils is deployed to
disassemble the code. This circumvents the problem
of dealing with different binary formats. As such it
minimises the hardware dependent part of the toolset.
The second step of translating the code into a base CFG
is left to a comparably simple program. Currently this
program only deals with ARM code but can be ported to
other CPUs with moderate effort. Besides analysing the
output ofobjdump it also queries theGoanna[7] tool
(which we have used as source code analyser/parser)
to obtain additional information to fill in information
missing in the object code analysis. The details of this
interaction will be discussed in later sections of this pa-
per. In a third and architecture independent step the
CFG is augmented with various metadata which can
be obtained with some effort from the base CFG. The
metadata consists, for example, of loop-nesting levels,
backward edges etc. This step has been separated from
the second step to keep the architecture dependent part
modular. In Figure 1, the second and third step are for
simplicity of the representation joined into the process
of structural analysis.

The CFG generated by the previous step is used to
generate the tree representation withCFG2Tree. The
parent nodes may either be of type sequence, alterna-
tive, or loop while the leaf nodes of the tree represent
the transitions in the CFG. The leaf nodes may con-
tain a call to another function. The traceparser uses the
CFG, which actually describes already all the possible
transitions which may occur, as well as the tree repre-
sentation to convert the execution traces into measured
ETPs. The traceparser does not only produce ETPs for
all the leave nodes of the tree, but also of parent nodes.
This is useful when trying to track down where and why
overestimations are introduced in the later computation
process. For this the computed and the measured ETPs

2

2

call do()

3

4 5

6 7

1

8

10 9

11

Figure 2: Sample Control-Flow Graph of Structures
Found in theL4 N1Microkernel

can be directly compared.
Finally the computation stage takes the schema rules

to produce ETPs for the parent nodes of the tree. Se-
quences form simple additions, alternatives use themax

operator and loops use multiplication with the number
of loop iteration and add the loop entry and loop exit.

3 WCET Analysis of an RTOS
Kernel

In this section we discuss the main issues encountered
when analysingL4 N1. However, similar problems can
be expected when analysing any other kernel. The con-
structs and issues listed below are often used in oper-
ating system kernels or are caused by compiler optimi-
sations.L4 N1source exhibits a reasonable number of
these. As removal of these would heavily affect the per-
formance of the kernel, we deem that we have to work
around the problem, rather than avoiding it by imposing
strict coding rules and switching compiler optimisations
off. Figure 2 depicts a number of constructs in the CFG
for illustration purposes. In reality the constructs are
much larger and span up to several dozens of nodes in
the control-flow graph.

3.1 Non Well-Structured Code

In an RTOS kernel there is deliberate deviation from
structured coding, in particulara with regards to the use
of goto statements. The current implementation ofL4
N1 for ARM processors contains more than 20goto
statements. This number is not including non well-
structured code written in assembly. Use of such cod-
ing technique to optimise the kernel leads to deviation
from properly defined structures and thus, introduces

more complexity to resolve. For example, consider the
edge between node-4 and node-6 (edge4-6) in Fig-
ure 2. Three other transitions namely,4-7, 5-6, 5-7

provide alternate paths through which control can flow.
Such non planar code can be resolved by duplicating
some of the nodes in the tree.

Syntax-tree based approaches, like the one used by
Colin and Puaut [2] as well as the approach by Theil-
ing et al. [8], which uses an integer linear programming
approach, should technically be able to deal with such
code. However, well-structured code is a typical restric-
tion of many static WCET analysis approaches.

A similar problem exists with irreducible loops as
formed by nodes9 and10 in Figure 2. Again this can
be resolved by duplicating nodes. Currently our toolset
has not yet implemented an algorithm to identify ir-
reducible loops like the one presented by Sreedhar et
al. [9] and as such this is manually resolved.

3.2 Multiple Loop Exits

The use ofbreak or return statements in loops leads
to multiple points of exit out of these loops.L4 N1 for
ARM currently contains 18 break statements in loops.
return statements within loops are translated by the
gccARM compiler into branches to the end of the func-
tion. This leads to code beingvirtually shared by the
loop exit which results in the main function body by-
passing the loop if the loop is part of a conditional.
The transition3-11 in Figure 2 demonstrates such a
situation. It is an issue, since the loop exit notionally
stretches to the nearest common node outside the loop,
which in this case is the return node at the end of the
function. Such code exists in various locations like, for
example, the IPC slowpath implementation. Within our
approach this is solved by duplicating the code shared
between the loop exit and the main sequence bypassing
the loop.

3.3 Inline Assembly

The introduction of inline assembly text into the source
code in turn introduces difficulties when querying a
source code analysis tool likeGoanna. This typically
occurs in sections of kernel which are expected to be
executed several more times than others. Assembly text
is inserted in 23 places in the currentL4 N1 implemen-
tation.

3.4 Assembly Files

Besides inline assembly, the kernel also has a consid-
erable code written in assembly. This covers, in partic-

3

pistachio/kernel/include/arch/arm/ptab.h:51

f0008170: e3520007 cmp r2, #7 ; 0x7

;; Switch statement indirect jump
f0008174: 979ff102 ldrls pc, [pc, r2, lsl #2]

f0008178: ea0000c2 b f0008488

;; Jump table begins after an instruction

f000817c: f0008470 andnv r8, r0, r0, ror r4

f0008180: f000847c andnv r8, r0, ip, ror r4
f0008184: f0008488 andnv r8, r0, r8, lsl #9

f0008188: f000847c andnv r8, r0, ip, ror r4

f000818c: f0008494 mulnv r0, r4, r4

f0008190: f000847c andnv r8, r0, ip, ror r4
f0008194: f0008488 andnv r8, r0, r8, lsl #9

f0008198: f000841c andnv r8, r0, ip, lsl r4

Figure 3: Switch statement fromL4 N1kernel objdump

ular, the trap code resolving interrupt handling and the
performance critical IPC fastpath. Being highly opti-
mised code, it adheres to little convention in terms of
standard C or C++ compiled code. In particular it intro-
duces irreducible loops such as the transitions9-10 and
10-9 in Figure 2. As mentioned earlier such loops need
duplication of nodes to be represented within the tree.
Additionally, the detection of these loops and transla-
tion into tree is non-trivial. In particular, the irreducible
loops within the kernel span more than 10 CFG nodes.

3.5 Indexed Jumping

Indexed jumping occurs when there are multiple cases
in a switch statement. The compiler creates a hash
table of all thecase addresses and makes an indi-
rect jump to these while optimising the code. Control
flows to the respectivecase depending upon the ad-
dress stored in a register or by directly indexing the hash
table. Ultimately, we need to obtain edges to all possi-
ble branch targets contained in thejump table

As a first approach, line references in source code
seem to be an answer to the location (address) of each
case body. But this is not true since an optimising com-
piler distorts the resulting object code (in many cases
even merges several cases, extracts common statements,
etc).

Knowing the typical anatomy of switch statements,
we can reconstruct the possible control flow with mod-
erate effort by parsing the jump table itself. Parsing a
jump table involves the main issue of identifying it cor-
rectly. This task becomes more difficult when the ta-
ble is embedded in the code segment by the compiler.
We have observed that the jump table always lies one
instruction after theswitch statement indirect jump.
This behavior being constant in all our cases, including

node

Entry

Rest Tree
Rest Tree

Rest subtreeRest subtree
Rest subtree

Switch Statement

from indirect jump to respective cases

node

node
node node

New edges to cases

Indirect Jump at
f0028864

Case 1
f002886c f002887c

Case 2 Case 3
f0028880

Default
f0028850

Figure 4: Corresponding graph after patching switch
statement

theL4 N1kernel, we chose to use this as an identifying
criteria. (see Figure 3, code modified for best view)
We can patch the switch statement by extracting the ad-
dresses of each case statement and creating an edge to
it. This is illustrated in Figure 4 where we have drawn
three more edges from switch indirect jump node to the
respectivecase.

3.6 Returns

The kernel version investigated contained a large num-
ber of register indirect jumps. Technically closely re-
lated to the above, the problem is that there is no jump
table which can easily identified. In most cases these
are compiler generated return statements. In ARM the
registerlr contains the return address for a function
call. For recursive functionslr is pushed onto the stack
which can be easily identified. However, in some cases
the function is so small that it can make use another lo-
cal register which is used to storelr prior to a call to
another function and later moved onto thepc to imple-
ment a return statement. This requires tracking of regis-
ters within the tool evaluating the output ofobjdump to
distinguish return statements from genuine register in-
direct branches or function calls. For the time being it
is not planned to implement full tracking of all register
content, but rather tracking of where the return address
of a function is stored. Alternatively we might deploy
lookups in the source code usingGoannato solve this
problem.

3.7 Function call targets

This issue refers to a set of locations created by the pro-
grammer himself, which are not easily retrievable from

4

for (int i = 7; i < IRQS; ++i) /* 0..6 are reserved */
{
 if (status & (1ul << i)) {
 void (*irq_handler)(int, arm_irq_context_t *) =

 return;
 }
}

 irq_handler(i, context);
 (void (*)(int, arm_irq_context_t *))interrupt_handlers[i];

Figure 5:L4 N1kernel interrupt vector array indexed in
a loop

the object code. A good example of this type of coding
would be aninterrupt vector table, which distributes
incoming hardware interrupts to registered handlers. In
theL4 N1kernel code, a jump to these routines is made
through an array of function pointers. Since the code is
accessing a global array, ascertaining where this array
is initialised is quite tedious in the sense that it may be
initialised anywhere in the source code spanning con-
siderable number of files. In addition, the initialisation
may be obscure or actually happening dynamically at
runtime. Since the source code analysis byGoannahas
so far been unable to identify the content of global vari-
ables, manual analysis is the only way to describe these
constucts. However, there are only few locations in the
kernel which make use of this kind of function calling
and thus the required manual intervention is limited.

Besides knowing the targets of called functions, there
is also the issue of encoding it appropriately in the CFG
and tree. Since our toolset allows only onecall per
CFG node, we need to circumvent the problem. We
have done that by allowing stand alone function call
nodes, which have no measured execution time them-
selves. This is useful for encoding alternative func-
tions to be called and is used, for example, in theL4
N1 kernel debugger where depending upon an enviro-
ment variable either one or the other function is called.
Although the kernel debugger is irrelevant for our anal-
ysis, there are some constructs in this part of the code
which are interesting for analysis. Furthermore, con-
structs similar to these may be included later during
development of kernel. A special case is where the
function array is indexed by a loop control variable or
any descendant of that as has been used in theL4 N1
interrupt vector table (see Figure 5, extract taken from
irq.cc). In this case only one of the target functions is
executed for an interrupt. However, the latency is differ-
ent since the code checks each bit of the interrupt mask
with each loop iteration until it hits the correct one and
calls the handler function.

We can apply this strategy in conjunction with un-
rolling of loops to solve the problem of multiple tar-
gets where an interrupt vector array has been used in

 (1ul << i))
if (status &

 (1ul << i))
if (status &

 (1ul << i))
if (status &

 (1ul << i))
if (status &

Loop Head

Exit Node

Call funcptr()

Call funcptr()

Call funcptr()

To A

To B

To C

for (int i = 7;; ++i)Loop Head

i < IRQS;

Exit Node

Call funcptr()

To A, B, C

Figure 6: Stand alone nodes with loop unrolling tech-
nique for interrupt vector array

source code to address different interrupt handlers (see
Figure 6).

3.8 Context Switch Jumps

Context switches are subject to three problems.

1. Context switches are nontrivial to positively iden-
tify without creating false positives. Thus it is
considered inevitable to manually identify these.
However, again there are only very few places in
the kernel that actually perform a context switch,
keeping the intervention at this stage very small.
A result of the context switch is that the execution
may transfer from any of the context switch nodes
to any other node containing a context switch, re-
quiring our tool to provide appropriate transitions
in the automata performing the trace parsing.

2. After a context switch, anasynchronous notifica-
tion may be delivered. This happens because a
notification is issued when the sending thread is
running and the receiving thread is not (this as-
sumes a single threaded, single processor CPU).
The current implementation of anasynchronous
notificationpushes a notification stack frame onto
the stack of the receiving thread, thus executing
the receive function prior to resuming the execu-
tion when the context switch passes control to the
receiving thread. This is resolved by notionally
adding a context switch to the start and end of
the notification routine, allowing theTraceparser
(which is part of the toolset) to switch to the no-
tification and back from it. The time of the asyn-

5

chronous notification needs to be dealt with, de-
pending on what the result of the analysis is to
be used for. In the case of latency analysis, the
time for theasynchronous notificationneeds to be
added to the called function while for schedulabil-
ity analysis, this needs to be considered separately
as part of the communication cost.

3. Finally from a trace parsing point of view, per-
forming a context switch means areturn after a
context switch no longer corresponds to thecall

performed before doing the context switch. As
such again, theTraceparserneeds to allow for
return statements to connect to any possible lo-
cation than only from where the returning function
was called. Unfortunately this takes away some of
the sanity checking available when doing the anal-
ysis such as checking that areturn is returning to
the place the function was called from. However,
the likelyhood of a trace which is corrupted in such
a particular way is very low.

3.9 Portability

As opposed to application code, which is built on top of
hardware abstractions (standard libraries, and kernel),
the kernel is supposed to be deployed on a variety of
differebt systems. Having multiple target architectures
supported by the kernel requires that the WCET estima-
tion technique be portable, since it needs to be available
for all target architectures. This is a major challenge
as the work over the years has shown that this is not
a trivial task. The support for multiple architectures is
often reflected by many#defines. The#define is ef-
ficient and easy to use, but makes the code harder to
read. Since manual intervention in the analysis is al-
most inevitable, the analysis of a kernel requires de-
tailed knowledge of the kernel as well as fundamental
understanding of WCET analysis.

3.10 Memory Management

A problem reported by Colin and Puaut [2] for the
RTEMS kernel is code in the memory allocation can
produce extremely long execution times that exceed the
average execution time by a large margin.L4 N1suffers
in the same manner during the unmapping of memory
regions. However, this is only of theoretical relevance,
as we would expect real-time applications to only make
use of this system call when shutting down or doing ex-
ception handling. Obviously this still leaves the issue of
non real-time applications effectively blocking the ker-
nel while performing such a call as they shut down. It

is expected that the issue will be addressed on the ker-
nel side by changing the way memory management is
handeled.

3.11 Parametric WCET

Run-time parameter dependent worst case execution
times have also been experienced by Colin and Puaut
[2]. This can either be caused by system parameters
(e.g., the number of threads sending messages to a spe-
cific thread in the system) or caused by structural pa-
rameters (e.g., what kind of inter-process communica-
tion (IPC) is used for a specific system call inL4 N1).
The IPC example is caused by the fact that all IPC func-
tions inL4 N1use the same system call, but with differ-
ent parameters.

As kernel code is quite complex to understand, the
analysis of this code needs expertise in WCET analysis
and OS construction. Otherwise the intrinsic interaction
between different parts of the kernel may be misinter-
preted or overlooked completely. In order to separate
out different invocations of the same primitive (e.g., re-
ceive only IPC, send only IPC, IPC payload size, etc.)
we currently need to manually remove irrelevant parts
of the respective CFG. Future versions will use code
annotations to identify different parts of the primitives.

3.12 Rapid Evolution

L4 N1 suffers from a very specific problem. The code
is not fixed, but evolves rapidly over time, while at the
same time the approach to analyse it is being developed
and refined. Opposed to applications which are writ-
ten and then deployed, different snapshots of the kernel
will be deployed. Thus the analysis has to be performed
repeatedly on slightly different versions of the kernel.
This offers problems and opportunities. On one hand it
requires the WCET approach used to require minimal
user interaction, on the other hand it enables the use of
annotations in the code.

FurthermoreL4 N1uses memory protection and vir-
tual addressing, which distinguishes it from most of the
real-time operating systems around and is motivated by
the fact that partitioning and fault isolation is a highly
desirable feature in complex embedded systems. Static
analysis requires the modelling of translation-lookaside
buffers (TLB), which adds to the state space. For
measurement-based approaches, this adds to the vari-
ability of the code, depending on the number of TLB
misses. However, the kernel itself currently makes little
use of the virtual memory, but applications analysed on
top do suffer from this.

6

L4 N1 is coded in C++. While only a very limited
subset of C++ is chosen, it nevertheless creates an addi-
tional engineering effort in the analysis approach. How-
ever, on the other hand,L4 N1as a microkernel is small
compared to monolithic kernels which in turn makes the
analysis much more tractable.

4 What’s Next

Future work can be split into two categories. One which
is related to development of the kernel itself and the
other which looks at future tool enhancements.

So far the work has been carried out on a working
snapshot of the kernel. Due to the experimental na-
ture of the work it does not seem practical to track all
changes to the kernel as they are made. The most sub-
stantial change ofL4 N1in the last half year was the
move to a single stack kernel. This implies the disso-
lution of the call/return relationship and subsequently a
substantial change in the context switch modelling.

The next step is to look into a multi-processing ver-
sion of the kernel. This includes looking at more funda-
mental issues of real-time in multi-processing environ-
ments and is in itself a large project.

On the tool-set and approach side of things, further
automation and support for other architectures is on the
agenda. This specifically covers the areas of

• register tracking, to automatically resolve more
control flow instructions;

• irreducible loop identification and resolution;

• allowing for source code annotations to be taken
into account.

The source code annotations are particularly relevant to
provide separate WCETs for different but closely re-
lated kernel primitives. Besides these automation is-
sues, we also want to continue working on the static
analysis support for the approach [4].

5 Conclusion

In this paper we have listed a number of issues we have
encountered in our effort to analyse theL4 N1microker-
nel for the WCET of all kernel primitives and how we
resolved these. While we have mainly looked atL4 N1
the insights should translate to a number of other ker-
nels. The small footprint ofL4 N1compared to mono-
lithic kernels has certainly been helpful in keeping com-
plexity of the analysis within managable levels. Besides

the worst-case analysis, the approach can support ker-
nel development in a number of ways. Hot-spot analy-
sis can identify code portions which account for larger
parts of the execution time both in terms of execution
frequency as well as execution time, and thus help di-
recting optimisation efforts. Furthermore our apporach
can also be applied to detect dead code or code not cov-
ered in the regression tests.

References
[1] ARM 7TDMI Data Sheet, August 1995. ARM DDI

0029E.

[2] A. Colin and I. Puaut, “Worst case execution time anal-
ysis of the RTEMS real-time operating system,” inPro-
ceedings of the 13th Euromicro Conference on Real-Time
Systems, (Delft, Netherlands), pp. 191–198, June 13–15
2001.

[3] F. Mehnert, M. Hohmuth, and H. Härtig, “Cost and ben-
efit of separate address spaces in real-time operating sys-
tems,” in Proceedings of the 23rd IEEE Real-Time Sys-
tems Symposium, (Austin, TX, USA), 2002.

[4] S. Schaefer, B. Scholz, S. M. Petters, and G. Heiser,
“Static analysis support for measurement-based WCET
analysis,” in12th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Appli-
cations, Work-in-Progress Session, (Sydney, Australia),
Aug. 2006.

[5] A. Colin and S. M. Petters, “Experimental evaluation of
code properties for WCET analysis,” inProceedings of
the 24th IEEE International Real-Time Systems Sympo-
sium, (Cancun, Mexico), Dec. 3–5 2003.

[6] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis
of probabilistic hard real–time systems,” inProceedings
of the 24th IEEE Real-Time Systems Symposium, (Austin,
Texas, USA), pp. 279–288, Dec. 3–5 2002.

[7] A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and
F. Rauch, “Goanna — A Static Model Checker,” inPro-
ceedings of the 11th International Workshop on Formal
Methods for Industrial Critical Systems, (Bonn, Ger-
many), Aug. 2006.

[8] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and pre-
cise WCET prediction by spearated cache and path analy-
sis,” Journal of Real–Time Systems, vol. 18, pp. 157–179,
2000.

[9] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee, “Identifying
loops using dj graphs,”ACM Transactions on Program-
ming Languages and Systems, vol. 18, no. 6, pp. 649–658,
1996.

7

