Issues in Analysing L4 for its WCET

Mohit Singal' Stefan M. Petter§’

T Computer Science and ., .. ¥ School of Computer Science
Engineering, IIT Guwahati National ICT Australia and Engineering, UNSW

Assam, India Sydney, Australia Sydney, Australia

Abstract In embedded systems, this kernel is mainly targeted

for mission critical and consumer electronics systems.
Real-time analysis of a system requires knowledge Diiis paper discusses the issues, that need to be solved
the worst-case execution time of all code in the systefor this specific kernel. It also examines if and how
This requirement covers not only application code, btiese issues might be addressed by related work.

also operating system and kernel code. In this paper w&yhjle Potoroo aims to be laregly target independent,
discuss the issues specific to kernel code and how Wg analysis is currently performed on an ARM [1] pro-
aim to address these in our work towards analysing thgssor based platform and some of the issues reported
L4 microkernel for the worst-case executiontimes of e specific to the ARM architecture. The choice of
system-call primitives. The main focus in that proceggr\M is mainly driven by the use df4 N1 While ports
is to maximise the degree of automation of the analysjg, other architectures exist, the ARM port of this ker-
as the analysis needs to be repeated for any subseqygps the most progressively developed. However, the
version of the kernel. processors implementing the ARM architecture do ex-
hibit many of the problems experienced on other archi-
1 Introduction ;ﬁf&%iioa;ﬂd thus is a good reference point for this and

Embedded real-time systems are becoming in generaf © Our knowledge Colin and Puaut [2] published the
increasingly complex. While simple systems remafly other work addressing the WCET analysis of an
numerous, the number of more complex high end ef@Perating system kernel, in their case the RTEMS ker-
bedded systems is steadily growing and their cofiél- However, RTEMS does not provide the memory
plexity makes the use of a realtime operating systepfotection offered byL4 N1 and their work did not
(RTOS) more or less mandatory. Even more, robu$§QVer the entire kernel. Our work aims to cover all
ness requirements and the integration of functionalifntime relevant parts of the4 N1 kernel and aims
formerly implemented on a set of loosely coupled CPUJ@ Provide an environment which allows the WCET
onto a single chip both require memory protection Sin@_nalyms fora given hardware platform outside the aca-
ilar to a desktop or server system. The assumptionsfj(ﬁ*“'c lab environment. Mehnert et al. [3] have looked
the work in worst-case execution time (WCET) analysiato the cost of address spaces, but have not fundamen-
have mostly been focused on the application domai@lly @ddressed the issue of WCET analysis of the ker-
This involves, for example, the assumption of planﬁ_rel- Com.merC|aIIy avallgble kernels are sometimes de-
code or requirements of universal knowledge of merdivered with representative sample execution times for
ory accesses. Thotorooproject we have embarkedSOMe kernel_prlmltlves on a give platforr_n. However,
in aims to analyse the NICTA developed version of Li€Se execution times are always expressively exempted
microkernel N1 embedded API. To avoid any confusidfP™m being in any way guaranteed.
we will denote the L4 kerenel in NICTA N1 embedded The next section will briefly introduce our approach
API L4 N1throughout the paper. to WCET analysis. Section 3 digs into a detailed analy-
_ -~ _ sis of the issues we have encountered during our effort
*National ICT Australia is funded by the Australian Govermte to analysd.4 N1 Finally Sections 4 and 5 conclude the
Department of Communications, Information Technologyd dne - f
Arts and the Australian Research Council through Backings-AuP@Per with an outlook into future work and a summary
tralia’s Ability and the ICT Research Centre of Excellencegtams. Of the papers findings.




2 WCET Approach

Execution/
Simulation

Execution II
Traces

Executable

Sourcecode

GNU

Many issues will be explained in the context of our objdump

WCET approach. As such we consider it helpful to
briefly introduce our approach and toolset prior to ac-
tually discussing the issues experienced during analysis
so far.

disassembled
Objectcode

CFG.xml

Structural

Analysis
Our approach is measurement based, but instead of @
using the end-to-end measurements and safety factors

commonin industry, we use measurements obtamed on]l
the basic-block level together with a tree and a tim- s

ETPs
ing schema to compute the WCET of the kernel prim-

itives. Using the tree allows us to implicitly cover any Figure 1: Toolchain Overview
possible path through a kernel primitive, thus ensuring
that WCET is not underestimated based on the path
executed. Opposed to end-to-end measurements basithe extraction of a control-flow graph (CFG) from
blocks exhibit their respective WCET much more eathe kernel binary image is split into three steps. In a
ily, as the numbers of different execution times is fdirst stepobjdump from GNU binutils is deployed to
a basic block are usually much smaller due to a linisassemble the code. This circumvents the problem
ited number of variation causing input states and cacbiedealing with different binary formats. As such it
misses. However, in order to provide guarantees thainimises the hardware dependent part of the toolset.
the WCET has been observed on the basic-block ledéle second step of translating the code into a base CFG
we are also working on a static analysis approach [44.left to a comparably simple program. Currently this
Within this work we are aiming to establish the numbemrogram only deals with ARM code but can be ported to
of cache misses which could and should be obserwgttier CPUs with moderate effort. Besides analysing the
during the measurements performed and compare theéput ofobjdump it also queries th&oanna[7] tool
results obtained by static analysis with the measu¥grhich we have used as source code analyser/parser)
ments. The base line is to avoid detailed hardware madd-obtain additional information to fill in information
elling, but rather to stick to first order effects like cachmissing in the object code analysis. The details of this
misses in order to keep the static analysis light weighinteraction will be discussed in later sections of this pa-
Our toolset is depicted in Figure 1. In terms gper. In a third and architecture independent step the
building blocks it is very similar to the pWCET toolseCFG is augmented with various metadata which can
used by Colin et al. [5,6]. The major difference is he obtained with some effort from the base CFG. The
shift in associating the computational weight in terms ofietadata consists, for example, of loop-nesting levels,
WCET onto the edges of the control flow graph (CF@)ackward edges etc. This step has been separated from
rather than the nodes used in the previous work. Thige second step to keep the architecture dependent part
increases accuracy of the analysis by separating effguedular. In Figure 1, the second and third step are for
caused for example by a branch prediction unit into segimplicity of the representation joined into the process
arate entities. However, more important for our workf structural analysis
are the changes in the subsequent tree representatiothe CFG generated by the previous step is used to
and timing schema, which allow us to deal efficientlyenerate the tree representation WtkG2Tree The
with non well-structured code. parent nodes may either be of type sequence, alterna-
The kernel binary image is the base for our analystive, or loop while the leaf nodes of the tree represent
By analysing primarily from the compiled and linkedhe transitions in the CFG. The leaf nodes may con-
executable, we avoid second guessing the effects of tam a call to another function. The traceparser uses the
compiler. The generation of traces from the executall&G, which actually describes already all the possible
may either be intrusive via instrumentation code addédnsitions which may occur, as well as the tree repre-
to the executable or non intrusive, via hardware sugentation to convert the execution traces into measured
ported tracing mechanisms or cycle accurate simuBBTPs. The traceparser does not only produce ETPs for
tions. Whenever available hardware supported tracialj the leave nodes of the tree, but also of parent nodes.
will be used, as it is non-intrusive and is not subject fbhis is useful when trying to track down where and why
the question of whether the simulator matches 100 @%erestimations are introduced in the later computation
the hardware. process. For this the computed and the measured ETPs

Goanna



more complexity to resolve. For example, consider the
edge between node-4 and node-6 (edgé) in Fig-

ure 2. Three other transitions namely,7, 5-6, 5-7
provide alternate paths through which control can flow.
Such non planar code can be resolved by duplicating
some of the nodes in the tree.

Syntax-tree based approaches, like the one used by
Colin and Puaut [2] as well as the approach by Theil-
ing et al. [8], which uses an integer linear programming
approach, should technically be able to deal with such
code. However, well-structured code is a typical restric-
tion of many static WCET analysis approaches.

A similar problem exists with irreducible loops as
Figure 2: Sample Control-Flow Graph of Structur@'med by nodes and10 in Figure 2. Again this can
Found in the_4 NiMicrokernel be resolved py duplicating nodes. C_urrentlylour t_ool_set

has not yet implemented an algorithm to identify ir-
reducible loops like the one presented by Sreedhar et
can be directly compared. al. [9] and as such this is manually resolved.

Finally the computation stage takes the schema rules
to produce ETPs for the parent nodes of the tree. : :
guences form simple additions, alternatives useithe ng Multiple L oop Exits
operator and loops use multiplication with the numbéhe use obreak or return statements in loops leads
of loop iteration and add the loop entry and loop exit.to multiple points of exit out of these loopk4 N1 for

ARM currently contains 18 break statements in loops.
. return Statements within loops are translated by the
3 WCET Analysus of an RTOS gcc ARM compiler into branches to the end of the func-
Kerndg tion. This leads to code beingrtually shared by the
loop exit which results in the main function body by-

In this section we discuss the main issues encounteR&$sing the loop if the loop is part of a conditional.
when analysing.4 N1 However, similar problems canThe transition3-11 in Figure 2 demonstrates such a
be expected when analysing any other kernel. The c&ffuation. It is an issue, since the loop exit notionally
structs and issues listed below are often used in opgitetches to the nearest common node outside the loop,
ating System kernels or are caused by Comp"er Opt|rﬁVh|Ch in this case is the return node at the end of the
sations.L4 N1 source exhibits a reasonable number &fnction. Such code exists in various locations like, for
these. As removal of these would heavily affect the pegxample, the IPC slowpath implementation. Within our
formance of the kernel, we deem that we have to wodpproach this is solved by duplicating the code shared
around the problem, rather than avoiding it by imposirigtween the loop exit and the main sequence bypassing
strict coding rules and switching compiler optimisatiori§ie loop.

off. Figure 2 depicts a number of constructs in the CFG

for illustration purposes. In reality the constructs a8 3 |nline Assembly

much larger and span up to several dozens of nodes in

the control-flow graph. The introduction of inline assembly text into the source
code in turn introduces difficulties when querying a
31 Non Wdl-Structured Code source code analysis tool likBoanna This typically

occurs in sections of kernel which are expected to be
In an RTOS kernel there is deliberate deviation frogxecuted several more times than others. Assembly text
structured coding, in particulara with regards to the ugginserted in 23 places in the currdmt Nlimplemen-
of goto statements. The current implementatiorLdf tation.
N1 for ARM processors contains more than g6to
statements. This _numk_)er is not including non weI§_4 Assembly Files
structured code written in assembly. Use of such cod-
ing technique to optimise the kernel leads to deviati@esides inline assembly, the kernel also has a consid-
from properly defined structures and thus, introducesable code written in assembly. This covers, in partic-



pistachio/kernel/include/arch/arm/ptab.h:51
£0008170: 3520007 cmp r2, #7 ; 0Ox7

;; Switch statement indirect jump

£0008174: 979f£102 1drls pc, [pc, r2, 1sl #2]
£0008178: ea0000c2 b 0008488 New edges to casés IR

;; Jump table begins after an instruction ,/ from i”di’“n“f'p“’ respective cages
£000817c: £0008470 andnv r8, r0, r0, ror r4
£0008180: £000847c andnv r8, r0, ip, ror r4
£0008184: f0008488 andnv r8, r0, r8, 1lsl #9

Switch Statement

Indirect Jump at
0028864

£0008188: £000847c andnv 18, r0, ip, ror r4 [node
£000818c: £0008494 mulnv r0, r4, r4d @
£0008190: £000847c andnv r8, r0, ip, ror r4 Focd [rodd

£0008194: £0008488 andnv r8, r0, r8, 1lsl #9
£0008198: £000841c andnv r8, r0, ip, 1lsl r4 ‘ i
Rest Tree
Rest Tree

Figure 3: Switch statement frobm N1kernel objdump Figure 4: Corresponding graph after patching switch
statement

ular, the trap code resolving interrupt handling and the

performance critical IPC fastpath. Being highly optitheL4 N1kernel, we chose to use this as an identifying
mised code, it adheres to little convention in terms efiteria. (see Figure 3, code modified for best view)
standard C or C++ compiled code. In particular it introWe can patch the switch statement by extracting the ad-
duces irreducible loops such as the transitionso and dresses of each case statement and creating an edge to
10-9 in Figure 2. As mentioned earlier such loops neéd This is illustrated in Figure 4 where we have drawn
duplication of nodes to be represented within the trédree more edges from switch indirect jump node to the
Additionally, the detection of these loops and transléespectivecase.

tion into tree is non-trivial. In particular, the irredudéb

loops within the kernel span more than 10 CFG nodeg._G Returns

The kernel version investigated contained a large num-
ber of register indirect jumps. Technically closely re-
Indexed jumping occurs when there are multiple casé¢ed to the above, the problem is that there is no jump
in a switch statement. The compiler creates a haghble which can easily identified. In most cases these
table of all thecase addresses and makes an indare compiler generated return statements. In ARM the
rect jump to these while optimising the code. Contréggisterlr contains the return address for a function
flows to the respectivease depending upon the ad-call. For recursive functionsr is pushed onto the stack
dress stored in a register or by directly indexing the hagthich can be easily identified. However, in some cases
table. Ultimately, we need to obtain edges to all posshe function is so small that it can make use another lo-
ble branch targets contained in tjuenp table cal register which is used to stote prior to a call to
As a first approach, line references in source codsother function and later moved onto heto imple-
seem to be an answer to the location (address) of e&ient a return statement. This requires tracking of regis-
case body. But this is not true since an optimising conters within the tool evaluating the output@$jdump to
piler distorts the resulting object code (in many casééstinguish return statements from genuine register in-
even merges several cases, extracts common stateméhnggt branches or function calls. For the time being it
etc). is not planned to implement full tracking of all register
Knowing the typical anatomy of switch statementsontent, but rather tracking of where the return address
we can reconstruct the possible control flow with mo®f a function is stored. Alternatively we might deploy
erate effort by parsing the jump table itself. Parsinglaokups in the source code usi@pannato solve this
jump table involves the main issue of identifying it corproblem.
rectly. This task becomes more difficult when the ta-
ble is embedded in the cod(_e segment by the cc_)mpilg_r7 Function call targets
We have observed that the jump table always lies one
instruction after theswitch statement indirect jump. This issue refers to a set of locations created by the pro-
This behavior being constant in all our cases, includimggammer himself, which are not easily retrievable from

3.5 Indexed Jumping



for (int i =7; i <IRQS ++i)
{
if (status & (lul << i)) {
void (*irg_handler)(int, armirqg_context_t *) =
(void (*)(int, armirqg_context_t *))interrupt_handlers[i]
irq_handler(i, context);
return;
}
}

/* 0..6 are reserved */

Figure 5:L4 N1kernel interrupt vector array indexed i
a loop

the object code. A good example of this type of coding
would be aninterrupt vector table which distributes

incoming hardware interrupts to registered handlers. In
theL4 N1kernel code, a jump to these routines is made
through an array of function pointers. Since the codeﬁ

accessing a global array, ascertaining where this a”rﬂg

is initialised is quite tedious in the sense that it may be
initialised anywhere in the source code spanning con-

oop Head ) for (inti=7;....; ++i)

(Lul << i),

Loop Head

ToA,B,C

ure 6: Stand alone nodes with loop unrolling tech-
ue for interrupt vector array

siderable number of files. In addition, the initialisatio@q ,rce code to address different interrupt handlers (see
may be obscure or actually happening dynamically Iafgure 6).

runtime. Since the source code analysi€dnannahas
so far been unable to identify the content of global vari-

ables, manual analysis is the only way to describe thex® Context Switch Jumps

constucts. However, there are only few locations in the

kernel which make use of this kind of function calling-CNtext switches are subject to three problems.

and thus the required manual intervention is limited.

Besides knowing the targets of called functions, there
is also the issue of encoding it appropriately in the CFG
and tree. Since our toolset allows only oo€l1 per
CFG node, we need to circumvent the problem. We
have done that by allowing stand alone function call
nodes, which have no measured execution time them-
selves. This is useful for encoding alternative func-
tions to be called and is used, for example, in tide
N1 kernel debugger where depending upon an enviro-
ment variable either one or the other function is called.
Although the kernel debugger is irrelevant for our anal-

ysis, there are some constructs in this part of the code.

which are interesting for analysis. Furthermore, con-
structs similar to these may be included later during
development of kernel. A special case is where the
function array is indexed by a loop control variable or
any descendant of that as has been used in4h1
interrupt vector table (see Figure 5, extract taken from
irq.cc). In this case only one of the target functions is
executed for an interrupt. However, the latency is differ-
ent since the code checks each bit of the interrupt mask
with each loop iteration until it hits the correct one and
calls the handler function.

We can apply this strategy in conjunction with un-
rolling of loops to solve the problem of multiple tar-
gets where an interrupt vector array has been used in

1.

Context switches are nontrivial to positively iden-
tify without creating false positives. Thus it is
considered inevitable to manually identify these.
However, again there are only very few places in
the kernel that actually perform a context switch,
keeping the intervention at this stage very small.
A result of the context switch is that the execution
may transfer from any of the context switch nodes
to any other node containing a context switch, re-
quiring our tool to provide appropriate transitions
in the automata performing the trace parsing.

After a context switch, aasynchronous natifica-
tion may be delivered. This happens because a
notification is issued when the sending thread is
running and the receiving thread is not (this as-
sumes a single threaded, single processor CPU).
The current implementation of aasynchronous
notificationpushes a notification stack frame onto
the stack of the receiving thread, thus executing
the receive function prior to resuming the execu-
tion when the context switch passes control to the
receiving thread. This is resolved by notionally
adding a context switch to the start and end of
the notification routine, allowing th@raceparser
(which is part of the toolset) to switch to the no-
tification and back from it. The time of the asyn-



chronous natification needs to be dealt with, dés expected that the issue will be addressed on the ker-
pending on what the result of the analysis is toel side by changing the way memory management is
be used for. In the case of latency analysis, thendeled.

time for theasynchronous notificationeeds to be

added to the called function while for schedulabil- .

ity analysis, this needs to be considered separatéyll Parametric WCET

as part of the communication cost. . .
Run-time parameter dependent worst case execution

3. Finally from a trace parsing point of view, periimes have also been experienced by Colin and Puaut

forming a context switch meansraturn after a [2]. This can either be caused by system parameters
context switch no longer corresponds to tha1  (€.9., the number of threads sending messages to a spe-
performed before doing the context switch. A§ific thread in the system) or caused by structural pa-
such again, thelraceparserneeds to allow for fameters (e.g., what kind of inter-process communica-
return statements to connect to any possible 180N (IPC) is used for a specific system callli# NJ).
cation than only from where the returning functiorf he IPC example is caused by the fact that all IPC func-
was called. Unfortunately this takes away some 8ns inL4 N1use the same system call, but with differ-
the sanity checking available when doing the an&nt parameters.

ysis such as checking tharaturnis returningto ~ As kernel code is quite complex to understand, the

the place the function was called from. Howeve@nalysis of this code needs expertise in WCET analysis
the likelyhood of a trace which is corrupted in sucBnd OS construction. Otherwise the intrinsic interaction

a particular way is very low. between different parts of the kernel may be misinter-
preted or overlooked completely. In order to separate

.. out different invocations of the same primitive (e.g., re-

3.9 Portability ceive only IPC, send only IPC, IPC payload size, etc.)
yye currently need to manually remove irrelevant parts

As opposed to application code, which is built on top " tive CEG. Fut : i d
hardware abstractions (standard libraries, and kernd)) IN€ respectiveé L. FUlUure versions will use code
notations to identify different parts of the primitives.

the kernel is supposed to be deployed on a variety
differebt systems. Having multiple target architectures
supported by the kernel requires that the WCET esti 12 Rapid Evolution
tion technique be portable, since it needs to be available
for all target architectures. This is a major challenges N1 suffers from a very specific problem. The code
as the work over the years has shown that this is ngthot fixed, but evolves rapidly over time, while at the
a trivial task. The support for multiple architectures i§ame time the approach to ana|yse itis being deve]oped
often reflected by mangdefines. The#defineis ef- and refined. Opposed to applications which are writ-
ficient and easy to use, but makes the code hardetdf and then deployed, different snapshots of the kernel
read. Since manual intervention in the analysis is @il be deployed. Thus the analysis has to be performed
most inevitable, the analysis of a kernel requires dgepeatedly on slightly different versions of the kernel.
tailed knowledge of the kernel as well as fundamentghis offers problems and opportunities. On one hand it
understanding of WCET analysis. requires the WCET approach used to require minimal
user interaction, on the other hand it enables the use of
annotations in the code.

Furthermord_4 N1uses memory protection and vir-
A problem reported by Colin and Puaut [2] for théual addressing, which distinguishes it from most of the
RTEMS kernel is code in the memory allocation careal-time operating systems around and is motivated by
produce extremely long execution times that exceed tthe fact that partitioning and fault isolation is a highly
average execution time by a large mardid.N1suffers desirable feature in complex embedded systems. Static
in the same manner during the unmapping of memaapalysis requires the modelling of translation-lookaside
regions. However, this is only of theoretical relevancbuffers (TLB), which adds to the state space. For
as we would expect real-time applications to only makeeasurement-based approaches, this adds to the vari-
use of this system call when shutting down or doing eability of the code, depending on the number of TLB
ception handling. Obviously this still leaves the issue afisses. However, the kernel itself currently makes little
non real-time applications effectively blocking the kemse of the virtual memory, but applications analysed on
nel while performing such a call as they shut down. 1op do suffer from this.

3.10 Memory Management



L4 N1lis coded in C++. While only a very limitedthe worst-case analysis, the approach can support ker-
subset of C++ is chosen, it nevertheless creates an adéi-development in a number of ways. Hot-spot analy-
tional engineering effort in the analysis approach. Howis can identify code portions which account for larger
ever, on the other hantd4 N1as a microkernel is smallparts of the execution time both in terms of execution
compared to monolithic kernels which in turn makes tHeequency as well as execution time, and thus help di-
analysis much more tractable. recting optimisation efforts. Furthermore our apporach

can also be applied to detect dead code or code not cov-
ered in the regression tests.

4 What’s Next

Future work can be split into two categories. One whicﬁe]cer ences

is related to development of the kernel itself and tkl?] ARM 7TDMI Data SheetAugust 1995. ARM DDI
other which looks at future tool enhancements. 0029E g '

So far the work has been carried out on a Workirr:[g _ . L
snapshot of the kernel. Due to the experimental gl A Colin and I. Puaut, "Worst case execution time anal-
ysis of the RTEMS real-time operating system,”Rro-

ture of the work it does not seem practical to track all i f the 13th E oo Gonf Real-Ti
hanges to the kernel as they are made. The most sub-ccoeings o the L3th Euromicro Conterence on Real- Time

¢ ; ) ) Systems(Delft, Netherlands), pp. 191-198, June 13-15

stantial change of4 N1lin the last half year was the 5591

move to a single stack kernel. This implies the dissg-

lution of the call/return relationship and subsequently@ it of dqd : i )

bstantial change in the context switch modelling efit of separale acaress spaces In real-time operafing sys-
su : tems,” in Proceedings of the 23rd IEEE Real-Time Sys-

The next step is to look into a multi-processing ver-  1ems symposiungAustin, TX, USA), 2002.
sion of the kernel. This includes looking at more funda- .
mental issues of real-time in multi-processing enviroht SS Schaefer, B. Scholz, S. M. Petters, and G. Heiser,

L . tatic analysis support for measurement-based WCET
ments and is in itself a large prOJeC_t' . analysis,” in12th IEEE International Conference on Em-

On the tool-set and approach side of things, further peqded and Real-Time Computing Systems and Appli-
automation and support for other architectures is on the cations, Work-in-Progress Sessjafydney, Australia),

agenda. This specifically covers the areas of Aug. 2006.

F. Mehnert, M. Hohmuth, and H. Hartig, “Cost and ben-

A. Colin and S. M. Petters, “Experimental evaluation of
code properties for WCET analysis,” iroceedings of
the 24th IEEE International Real-Time Systems Sympo-
sium (Cancun, Mexico), Dec. 3-5 2003.

[6] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis

e allowing for source code annotations to be taken of probabilistic hard real-time systems,” Rroceedings
into account. of the 24th IEEE Real-Time Systems Sympag{Amrstin,
Texas, USA), pp. 279-288, Dec. 3-5 2002.

The source code annotations are particularly relevanip A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and
provide separate WCETSs for different but closely re- F. Rauch, “Goanna — A Static Model Checker,”Rino-
lated kernel primitives. Besides these automation is- ceedings of the 11th International Workshop on Formal
sues, we also want to continue working on the static Methods for Industrial Critical SystemgBonn, Ger-
analysis support for the approach [4]. many), Aug. 2006.

[8] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and pre-
cise WCET prediction by spearated cache and path analy-

e register tracking, to automatically resolve morf)
control flow instructions;

e irreducible loop identification and resolution;

5 Conclusion sis,” Journal of Real-Time Systeywsl. 18, pp. 157-179,
2000.

In this paper we have listed a number of issues we hgug v. C. Sreedhar, G. R. Gao, and Y.-F. Lee, “Identifying

encountered in our effort to analyse tteN1microker- loops using dj graphs, ACM Transactions on Program-

nel for the WCET of all kernel primitives and how we  ming Languages and Systersl. 18, no. 6, pp. 649-658,
resolved these. While we have mainly looked 4tN1 1996.

the insights should translate to a number of other ker-

nels. The small footprint of4 N1 compared to mono-

lithic kernels has certainly been helpful in keeping com-

plexity of the analysis within managable levels. Besides



