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Abstract. One of the challenges in verifying systems level code is the
low-level, untyped view of the machine state that operating systems have.
We describe a way to faithfully formalise this view while at the same time
providing an easy-to-use, abstract and typed view of memory where pos-
sible. We have used this formal memory model to verify parts of the
virtual memory subsystem of the L4 high-performance microkernel. All
formalisations and proofs have been carried out in the theorem prover
Isabelle and the verified code has been integrated into the current im-
plementation of L4.

1 Introduction

L4 is a second generation, general purpose microkernel [13] that provides the
traditional advantages of microkernels while overcoming the performance lim-
itations of previous generations. With implementations in the order of 10,000
lines of C++/assembler it is an order of magnitude smaller than Mach and two
orders of magnitude smaller than Linux. The small size and minimalistic design
bring L4 into the reach of formal specification and verification and lead to the
unique opportunity of bringing the rigour and trustworthiness of formal verifi-
cation to the very foundation of practical systems that are in current, industrial
use. In this paper, we give an overview of a pilot project testing the feasibility
of this idea and present a general solution to the problem of verifying low level
pointer modifications in system level code.

During this pilot project we encountered a number of OS code specific ver-
ification problems. Among them is the question of how to deal with pointer
arithmetic and low level memory modifications, as they are common in system
level code. Verifying high-level imperative pointer programs is already considered
a hard problem. Recent case studies like Mehta and Nipkow’s formalisation of
the Schorr-Waite graph marking algorithm [14] show that the complexity of the
problem can be reduced to an acceptable level for interactive verification if the
right abstractions are used. They exploit the idea that in a type safe language a
write to memory position of type S cannot influence another memory position of
a different type T (ignoring subtypes for the moment), thus drastically reducing
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the number of cases that need to be considered for each write. Unfortunately,
the implementation language of operating systems (C/C++/assembler) usually
is not type safe, and despite a plethora of available safe subsets of C, none of
them have caught on in the OS community. This is not entirely for the sake of
convenience; there are often good reasons to deliberately break the type safety
of the implementation language, among them performance and hardware pre-
scribed data structures. Performance enjoys an especially high priority in the
microkernel area: a few cache misses and some hundred processor cycles can
make the difference between a practical and impractical system. On the other
hand, not all OS code is deliberately type unsafe, in fact the vast majority of
it is perfectly fine. The approach presented in this paper enables us to achieve
a level of abstraction similar to the one of Mehta and Nipkow for these parts,
and at the same time (in the background) to use a very detailed memory model
that can faithfully formalise the few occasions of indispensable bit-level oper-
ations and pointer arithmetic expressions. The formalisation itself is relatively
straightforward (with a twist) — the contribution is that it can conveniently
describe both levels of abstraction at the same time and do so with minimal
overhead for concrete program verification, exploiting Isabelle/HOL’s automatic
type inference to avoid reasoning about explicit typing predicates for pointers.
As mentioned above the approach is not merely academic, but has been tried
out in a larger verification project.

After reviewing related work in section 2 and introducing notation in sec-
tion 3, we present our formalisation of a typed memory abstraction of untyped
memory in section 4 together with a small example. In section 5 we give a rough
overview of the verification project in which the technique was used to formally
verify parts of the L4 microkernel.

2 Related Work

Earlier work on OS verification includes PSOS [16] and UCLA Secure Unix [24].
Later, KIT [2] describes verification of process isolation properties down to object
code level, but for an idealised kernel with far simpler and less general abstrac-
tions than modern microkernels. A number of case studies [6,5,23] describe the
IPC and scheduling subsystems of microkernels in PROMELA and verify them
with the SPIN model checker. Manually constructed, these abstractions are not
necessarily sound, and so while useful for discovering concurrency bugs, they
cannot provide guarantees of correctness. The VeriSoft project [8] is attempting
to verify a whole system stack, including hardware, compiler, applications, and
a simplified microkernel called VAMOS that is inspired by, but not very close
to, L4. While the simplifications are appropriate for the goals of VeriSoft, it
is doubtful that the VAMOS kernel will show the necessary performance to be
relevant for industrial use.

The idea to use separate heaps for separate pointer types and structure fields
goes back to Burstall [4]. On the abstract level, our formalisation is most closely
related to Bornat [3] and Mehta and Nipkow’s [14] work in Isabelle, although



we exploit Isabelle’s type inference in a different way. The Caduceus tool [7]
supports Hoare logic verification of C programs, including the type safe part
of pointer arithmetic. Like all of the above, we do not use any special purpose
logics [19,10], but stay with standard Hoare logic, in our case Schirmer’s flexible
Hoare logic implementation in Isabelle/HOL [20]. On the concrete level, Nor-
rish [18] presents a very thorough and detailed memory model of C. Our formal-
isation has similarities to exploratory work on C++ in the VFiasco project [9].
The latter two provide a more precise machine model, while the former allows
for more convenient and efficient reasoning. Our model provides both.

Type-safe C variants like CCured [15] also take a dual approach to mem-
ory type-safety, by statically detecting safe pointer usage and adding runtime
checks for those cases where this cannot be verified. Our approach is oriented to-
wards interactive theorem proving, and does not require any change in language
semantics or runtime behavior.

3 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical
notation. This section introduces further non-standard notation and in particular
a few basic data types along with their primitive operations.

The space of total functions is denoted by ⇒. Type variables are written ′a,
′b, etc. The notation t :: τ means that HOL term t has HOL type τ .

datatype ′a option = None | Some ′a

adjoins a new element None to a type ′a. We use ′a option to model partial
functions in the setting of HOL. For succinctness we write bac instead of Some
a. The underspecified inverse the of Some satisfies the bxc = x. Function update
is written f (x := y) where f :: ′a ⇒ ′b, x :: ′a and y :: ′b. Implication is
denoted by =⇒ and [[ A1; . . .; An ]] =⇒ A abbreviates A1 =⇒ (. . . =⇒ (An =⇒
A). . .). Isabelle theories can be augmented with LATEX text which may contain
references to Isabelle theorems (by name — see chapter 4 of [17]). We use this
presentation mechanism to generate the text for most of the definitions and all
of the theorems in this paper directly from the Isabelle proofs.

4 A Typed Heap on Untyped Memory

There are a number of approaches to describing the state space of a program
embedded in a theorem prover. In the simple case, without pointers, one most
commonly either treats variable names as first-class HOL values, in which case
the state may be a function name ⇒ value, or treats the state as a tuple or
record type vara-typ × var b-typ × var c-typ. . . When embedding pointer pro-
grams it is convenient to use a model similar to the first for memory address-
able by pointers. Introducing pointers however also introduces the problem of
aliasing [3]. Consider a C program fragment with a long pointer foo and a



bool pointer bar where you want to show *foo = 1 after the program fragment
*foo = 1; *bar = true. The most basic approach is to model the pointers as
values of type addr and the heap1 as a function addr ⇒ value, where value is
a datatype with alternatives for long, bool, etc. Ignoring fancy syntax, this for-
mally equates to something like hp foo := Long 1; hp bar := Bool True, where
hp is a heap function. If we evaluate this in standard Hoare logic, we need the
precondition foo 6= bar to show that hp foo = Long 1 in the end.

In a type safe language, on the other hand, this precondition is an unnec-
essary overhead. We already know implicitly that foo 6= bar, because they have
different types. In the literature [3,14], this is modelled by a state space in which
each language type has its own heap. For the example above, that means we now
have functions boolh :: addr ⇒ bool and longh :: addr ⇒ long and we can show
the Hoare triple {|True|} longh foo := 1; boolh bar := True {|longh foo = 1|} au-
tomatically and without preconditions. The example is simplified, of course. In
a more realistic setting we would still have preconditions and invariants about
heap layout and pointers being not null. The key point, however, is that there
is no need to state pair-wise aliasing conditions on all pointers anymore.

As argued in the introduction, OS code does not normally use a type safe
language and does not restrict itself to a type safe subset, so we are forced to
use a model of the state space close to that of the underlying hardware memory
model if we want to preserve soundness. One such extreme treatment of the heap
would be to consider it simply as a function mapping addresses to bits, bytes
or words. This has the significant advantage that the hardware abstraction step
is very small and the model is amenable to reasoning about the type unsafe
operations sometimes present in low-level systems code. On the other hand, this
complicates the aliasing problem even further, because the pointers could also
alias by pointing into the middle of an encoding. Hohmuth et al [9] provide a
semantics for C++ types in such a setting.

What we want to achieve is a low-level heap view when necessary, and the
more convenient abstraction of multiple typed heaps when possible. Following
the reasoning that different types mean unaliased pointers in the type-safe frag-
ment, we require several things. First we need to know which memory locations
should correspond to which types. We then need to know that the memory lay-
out provides a disjoint layout of values. Finally, we need a means of using this
information to transform the untyped heap into multiple typed heaps, one for
each language type, together with rules to reason about updates of the heap
when they conform to the state’s type information. All this should be provided
in such a way that the complexity of encoding, decoding, typing etc, stays under
the hood at least for the common case of safe operations. The rest of this section
presents our formalisation of such a model together with a mechanisation that
aids in proofs about pointer programs when they can be shown to be type-safe,
while still allowing us to break type safety when necessary.

1 In this section we refer to a heap model since this is where valid pointers are restricted
to in the rest of our work, but the setting should be generalisable to a model for the
entire memory, including local variables.



4.1 The Model

We begin with Hohmuth et al’s [9] treatment of C++ types and extend it to
work with a heap abstraction that allows for effective reasoning about both
typed and untyped views of the heap and the effects of updates on the heap.
The emphasis is on mechanising the proof process, for example taking advantage
of the rewriting support in Isabelle and existing record update rules provided for
Isabelle record types, to reduce the proof burden on the program verifier. In this
discussion we avoid talking about a specific language embedding with the goal
of generality, however our main application is clearly C or a C-like language.

The following type synonyms describe the heap state:

addr = word32
heap-mem = addr ⇒ word32
heap-typ-desc = addr ⇒ typ-tag option
heap-state = heap-mem × heap-typ-desc

where word32 is a type representing 32-bit words2 imported from the HOL4
system and typ-tag is a type with a value for each language type3 used by the
program. For example, a program operating only on boolean, integer and pointer
types would have:

datatype typ-tag = BoolTag | IntTag | PtrTag typ-tag

Each language type has both a distinct Isabelle type and a distinct typ-tag value,
which we refer to as its type tag below. A good reason for doing things this way
is that in a shallow embedding we can avoid reasoning about possibly ill-typed
expressions, e.g. 3.14 / &foo. Instead, Isabelle’s type checker and type inference
can prevent us from even writing down such invalid expressions. The tag value
allows for explicit referencing of language types in Isabelle terms, and is bound
to its corresponding Isabelle type later, as described below. We require this to
maintain an explicit record of the type of each value stored in memory. Every
language type has a fixed size, given by the function typ-size :: typ-tag ⇒ nat.

The heap-typ-desc component of the heap state is a partial function that
describes the memory layout. We call it the heap type description. A tag t at
address a indicates that a is the base of the memory footprint for a value of type t.
Type safe programs respect the program’s memory layout in both read and write
operations. The heap type description is purely a proof convenience, a history
variable, and while it may be affected by, does not itself affect the semantics of
successful heap operations and should not be confused with hardware support
for tagged memory. The heap type description may be updated anywhere in the
program, for example by calls to malloc or free, or if we were to model local and
global variables in the program’s initial conditions on function call and return.

2 In this work we use 32-bit addresses and words but this could be generalised to n-bit
address spaces or finer/coarser granularity of addressing fairly easily.

3 We distinguish between language types of the programming language and Isabelle
types.
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Fig. 1. Well-formed heap layout

The predicate wf-heap :: heap-typ-desc ⇒ bool states the well-formedness in-
variant on the heap type description that is required to establish non-interference
of heap updates:

wf-heap d ≡
∀ x y t . d x = btc ∧ 0 < y ∧ y < typ-size t −→ d (n2w (w2n x + y)) = None

The type conversions w2n and n2w transform from word32 to nat and vice
versa. Examples of well-formed and not well-formed heap layouts are illustrated
in Figure 1.

Each Isabelle type associated with a language type must be an instance of
the type class ′a::c-type. The class declares three new constants:

to-word :: ′a::c-type ⇒ word32 list
from-word :: word32 list ⇒ ′a::c-type option
typ-tag :: ′a::c-type itself ⇒ typ-tag

The functions to-word and from-word convert between Isabelle values and
lists of words suitable for writing to or reading from the raw heap state. The
function typ-tag associates a type tag with each ′a::c-type. The type ′a itself
consists of a single element denoted by TYPE ( ′a). This sounds unusual at first,
but is easily achieved and part of the Isabelle standard library: since HOL types
are non-empty, we can create a polymorphic ′a itself by taking any element of
the type parameter ′a as the single occupant of ′a itself. For each fixed ′a, any
constant of type ′a itself, say TYPE, then refers to this one element. The term
TYPE (bool) is merely another way of writing the type restriction TYPE ::bool.

The size of the memory footprint of values of a ′a::c-type is given by size-of
:: ′a::c-type itself ⇒ nat :

size-of t ≡ typ-size (typ-tag t)

The following conditions, captured in the axiomatic type class ′a::mem-type,
must hold for any ′a::c-type we want to use in our heap abstraction below.

from-word (to-word (x :: ′a)) = bxc
|to-word (x :: ′a)| = size-of TYPE ( ′a)



Finally, we introduce a distinct Isabelle pointer type for each Isabelle type.

datatype ′a ptr = PtrVal addr

The additional ′a on the left-hand side can now be used to associate the pointer
type information with pointer values in Isabelle’s type system. The destructor
ptr-val retrieves the address from a pointer value. The pointer types themselves
can again be shown to be instances of ′a::mem-type.

We now come to the typed heap abstraction as used by embedded programs.
The function lift :: heap-mem ⇒ ′a::c-type ptr ⇒ ′a turns the raw heap into
multiple typed heaps — one for each ′a.

heap-list :: heap-mem ⇒ addr ⇒ nat ⇒ word32 list
heap-list h p 0 = []
heap-list h p (Suc n) = h p # heap-list h (p + 1) n

h-val :: heap-mem ⇒ ′a::c-type ptr ⇒ ′a option
h-val h p ≡ from-word (heap-list h (ptr-val p) (size-of TYPE ( ′a)))

lift :: heap-mem ⇒ ′a::c-type ptr ⇒ ′a
lift h ≡ λp. the (h-val h p)

As stated earlier, program expressions operate on the raw heap, ignoring the
type tags. This on its own may not be sufficient to faithfully express a language’s
semantics; lift h p will give the value at p where the semantics say a heap access
is valid, but we need to establish this validity first. This will usually require a
guard or precondition on the statement containing the expression. For example,
in C, we would need to know that the memory location had a value of the type in
consideration written to it at some earlier point, and that the pointer is correctly
aligned. This of course is not limited to this model and also applies to even a
simple standard model with multiple typed heaps.

Heap updates are performed with heap-update :: heap-mem ⇒ ′a::c-type ptr
⇒ ′a ⇒ heap-mem:

heap-update-list h p [] = h
heap-update-list h p (x # xs) = heap-update-list (h(p := x )) (p + 1) xs

heap-update h p v ≡ heap-update-list h (ptr-val p) (to-word v)

Again, heap update statements should be suitably guarded.
We exploit the polymorphism in Isabelle’s type system here to avoid explicit

definitions of heap abstraction functions for each language type. This may seem
a slight gain, but it also enables the simplification rules presented below to be
stated once for all types, instead of being reproved for each pair of types.

4.2 The Typed View

So far we are able to dereference pointers in our embedded programs, and may
be able to do first simple proofs. However, proofs will still have to consider un-
necessary aliasing concerns on lifted heaps if we do not know which pointers



respect the heap type description. For example, pointers of different types may
still be aliasing the same location, or pointers of the same type may have over-
lapping memory footprints. The standard way of ruling out these possibilities
is an invariant, or ad hoc history variables indicating what the valid pointers of
different types are.

Even if we know which pointers are valid, the effect of updates on the lifted
heap can only be expressed point-wise: we can determine that pointer p is not
affected by an update of pointer q if both are valid. We cannot determine that
if the bool incarnation of the lifted heap changes, the whole long incarnation, as
a function, is unaffected.

This means, that if we had, for instance, a heap invariant or abstraction
function for a linked list structure that only uses the long incarnation of the
lifted heap, we would need to prove a separate rule for that abstraction function
to show that it remains unchanged under bool updates — even if the abstraction
function explicitly states that all its pointers are valid.

Utilising the heap type description information we can provide a typed heap
abstraction for use in proofs that only depends on the values of the heap at
locations valid for the type. We can then prove simplification rules for reasoning
about updates to typed heaps once for all language types.

First we introduce the notion of pointer validity. A pointer p of type ′a ptr
is said to be valid under a heap type description d according to the following
definition:

d `t p ≡ d (ptr-val p) = btyp-tag TYPE ( ′a)c

It should be noted that this predicate does not explicitly mention the lan-
guage type, instead the type is determined automatically by Isabelle’s type in-
ference. We found this greatly enhancing the clarity of specifications and proofs.

The heap abstraction function liftc hides updates to heap locations not cor-
responding to the valid pointers for a particular typed heap:

liftc :: heap-state ⇒ ′a::c-type ptr ⇒ ′a option
liftc (h, d) ≡ λp. if d `t p then h-val h p else None

Like lift h, liftc h is polymorphic and returns a heap abstraction of type ′a
typ-heap = ′a ptr ⇒ ′a option. The program text itself can continue to use the
functions lift and heap-update, while pre/post conditions and invariants use the
stronger liftc to make more precise statements. The following conditional rewrite
connects the two levels.

liftc (h, d) p = bxc =⇒ lift h p = x

We have proved two further significant rewrite rules that support reasoning
about the effects of heap updates on liftc. The first rule states how an ′a ptr
update affects an ′a typ-heap, the second rule shows that an ′a ptr update does
not affect a ′b typ-heap if ′a is different from ′b.



[[wf-heap d ; d `t p]] =⇒ liftc (heap-update h p v , d) = liftc (h, d)(p 7→ v)
[[wf-heap d ; d `t p; typ-tag TYPE( ′a) 6= typ-tag TYPE( ′b)]]
=⇒ liftc (heap-update h p v , d) = liftc (h, d)

These are added to a simplification set, with other heap related lemmas, in
our work, and do not require manual application. Isabelle’s simplifier can resolve
the typ-tag TYPE ( ′a) 6= typ-tag TYPE ( ′b) condition automatically, as long as
the type tag definitions for language types are also in the default simplification
set. The heap type description changes relatively infrequently and therefore the
proof overhead in showing wf-heap d is low.

For any program that respects the heap type description, we can thus auto-
matically simplify away the fact that the heap is shared and pretend to work
on multiple typed heaps. At the same time, we can still capture the semantics
of type unsafe operations. In this case things are no longer automatic, and we
are required to provide rules for how the lifted heaps changed during the oper-
ation. This is a small price to pay for the flexibility and convenience gained on
the abstract level. It may even be possible to derive a set of rules that capture
common type unsafe operations, for example physical subtyping, although we
have not done so in our application.

We can also use type tags to write Isabelle expressions over language types.
For example, one might want to express in a specification that only heaps of
certain types can change during execution. For this we define the predicate
h-id-except :: typ-tag set ⇒ heap-state ⇒ heap-state ⇒ bool which satisfies the
following lemma for lifted heaps of type ′a typ-heap:

[[h-id-except ts s s ′; typ-tag TYPE ( ′a) /∈ ts]] =⇒ liftc s = liftc s ′

4.3 Example

Picking up the example from the introduction to this section, we show below
how it is expressed in our setting.

The state space is now a global program heap of type heap-state with two
pointers foo :: long ptr and bar :: bool ptr. It is easy to show that long and
bool are instances of the type class mem-type by defining the constants to-word,
from-word and typ-tag and proving that they satisfy the axioms stated in sec-
tion 4.1. Using Isabelle’s syntax mechanisms to abbreviate liftc (h,d) p = bvc
to ∗p = v and h := heap-update h p v to ∗p := v, the Hoare triple we can then
state and prove automatically, is the following:

{|wf-heap d ∧ d `t foo ∧ d `t bar |} ∗foo := 1; ∗bar := True {|∗foo = 1|}

The three preconditions in this statement present only a very small overhead. As
long as the program stays in a safe fragment of the language, e.g., when pointers
are used like Java references without pointer arithmetic, there is never need to
unfold their definition. They can also easily be propagated by the verification
condition generator. In contrast to explicit statements of pointer aliasing, they



also only talk about one pointer at a time, not pairwise distinctness or, as it would
be applicable in this more detailed setting, distinctness of encoding regions.

While structures can be treated like any other language type in this setting,
the formalisation presented here does not yet provide a separate heap for each
field of each structure as Bornat does. It is possible to achieve this by another,
analogous lifting step on top of liftc that takes field names into account. We have
recently formalised this in Isabelle, but have not used it in our case study yet.

5 The L4 Virtual Memory Manager

In this section we describe the case study which motivated the development of
this memory model: the virtual memory (VM) management system, one of the
three main abstractions L4 provides. Our approach is a classic and pragmatic re-
finement methodology. We start out from an abstract model of the kernel that we
then formally refine towards an implementation. The last step consists of gener-
ating C code that implements the same functionality as the original OS code. We
based our formalisation on the L4 X.2 API [12] and used the L4Ka::Pistachio [21]
implementation on the ARM architecture to resolve ambiguities in addition to
discussions with the developers on the pistachio-core mailing list.

5.1 The abstract model

The VM subsystem of L4 provides a flexible, hierarchical way of manipulating the
mapping from virtual to physical memory pages at user-level. Below we sketch
our formalisation and show the definition of unmap, one of the VM operations.

This model is still a simplification of the current L4 API because the API
stipulates two regions per address space (the kernel interface page and user
thread control blocks) that we have not modelled, and because the mapping
operations in L4 can work on regions of the address space rather than individual
pages.

Fig. 2 illustrates the concept of hierarchical mappings. The example maps
virtual page v1 in space n1, as well as v2 in n2, and v4 in n4 to the physical page
r1. Formally, we use the types R for the physical pages, V for virtual pages, and
N for names of address spaces.

Fig. 2. Address Spaces



Mappings M, i.e. positions in this picture, are uniquely determined either by
a page V in a virtual address space N, or by a physical page. An address space
is a function from pages V to mappings together with a set of access rights,
determining how the mapped page may be used from inside the address space.
On a concrete architecture, these will be rights like read/write/execute — here
we use the abstract type AR. The machine state is then a partial map from
address space names to address spaces.

datatype M = Virtual N V | Real R
types space = V ⇒ M × AR set

state = N ⇒ space option

The concept of paths relates these functions to the arrows in Fig. 2: s ` x  1 y
means that in state s there is a direct path from x to y. For this to be true, x
must be of the form Virtual n v, the address space n must be defined in state s
and it must map the virtual page v to y :

s ` x  1 y = (∃n v ar σ. x = Virtual n v ∧ s n = bσc ∧ σ v = (y , ar))

We write `  ∗ for the reflexive, transitive closure of the direct path relation.
The operation unmap n v ar reduces the access rights of all pages leading to

Virtual n v by ar (a set of access rights). If ar happens to be U (the universal
set) the operation makes these pages inaccessible. In the definition we use a
function clear that, given a name n, a page v, a set of access rights ar and an
address space σ in state s, returns σ where the access rights of all v ′ leading to
Virtual n v have been reduced by ar.

unmap :: N ⇒ V ⇒ AR set ⇒ state ⇒ state
unmap n v ar s ≡ λn ′. case s n ′ of None ⇒ None | bσc ⇒ bclear n v ar s σc

clear n v ar s σ ≡
λv ′. let (m, ar ′) = σ v ′ in if s ` m  ∗ Virtual n v then (m, ar ′ − ar) else (m, ar ′)

The other operations of the VM subsystem (flush, map, grant, create, and
memory lookup) are modelled in a similar way, modifying paths and access rights
accordingly. See our earlier work [11,22] for details on the same formalisation
which we have extended with access rights here.

We have shown a number of properties about the reachable states of the VM
system, among them that access rights can never increase when a page is mapped
to another address space, that there are no loops in the path structure, and that
address lookup is a total function. The latter is quite literally an important
safety property. Overheating and physical damage may result if two conflicting
TLB entries are present for the same virtual address [1, p. B3-26].

5.2 The concrete model

The concrete implementation of the address spaces abstraction in L4 is based on
two data structures, the page tables and the mapping database (MDB), as well as



the algorithms for their traversal and manipulation. This is because performance,
and in the case of ARM, the hardware, dictates that an efficient translation from
virtual to physical addresses and corresponding access rights be available. The
page tables are used to achieve the translation, while the MDB keeps track of
the mapping relation for the purpose of revocations like the unmap operation
shown in the previous section.

The state space consists of the heap-state together with some local and static
global variables. The page table and MDB data structure abstractions are induc-
tively defined on this raw state, i.e. they are a function and relation that take a
′a typ-heap as a parameter and when used in pre/post-conditions and invariants
this takes on a value of liftc in the current state. A complete description of the
semantics of the concrete operations, specifications and proofs is well beyond the
scope of this paper, with the raw theory files alone consisting of over 5000 lines
of Isabelle/HOL definitions and proofs. Instead we present the MDB definitions
and one example operation here to provide a flavour of the level of detail in the
model.

The MDB is a doubly linked list representing the pre-order traversal of a
mapping tree, which is essentially the tree described in the abstract model with
the arrow directions reversed. Nodes in the MDB are of type map-node:

record map-node = map-next :: word32
map-prev :: word32
map-pte :: pte ptr
map-depth :: word32

We use the integer representation of pointer addresses for next and previous
pointers as the type map-node ptr is not available until after this declaration.
The map-pte field stores a pointer to the corresponding page table entry and
map-depth contains the depth of the node in the tree for the pre-order tree
representation.

A subtree relation is defined on a typed heap s :: map-node typ-heap. The
term s ` a  T b states that b is in a’s subtree. This is defined as:

s ` x 7→ y = (∃m. s x = bmc ∧ get-next ′ m = byc)
[[s ` m 7→ m ′; get-depth ′ (s m) < get-depth ′ (s m ′)]] =⇒ s ` m  T m ′

[[s ` m  T m ′; s ` m ′ 7→ ma; get-depth ′ (s m) < get-depth ′ (s ma)]]
=⇒ s ` m  T ma

where get-next ′ m and get-depth ′ m act as expected, returning the next pointer
and depth respectively for a given map-node.

It should be clear that proofs about the MDB are localised to just the
map-node typ-heap and procedures operating on just the MDB can be easily
shown not to affect other typed heaps using the previous section’s lemmas.
wf-heap is part of the global invariant in our model.

An example of a procedure in our concrete model’s MDB is map-unlink used
during unmapping to remove a node from the linked list:



procedures map-unlink(m,mq) =
nm := cast TYPE(map-node ptr) (lift h mq ·map-next);
h := heap-struct-update h m map-next-update (cast TYPE(word32) nm);
IF nm 6= Null THEN

h := heap-struct-update h nm map-prev-update (cast TYPE(word32) m)
FI ;

CALL map-free(mq)

where

heap-struct-update h p f v ≡ heap-update h p (f v (lift h p))

An abstraction relation that relates the state spaces of the abstract and
concrete models is defined based on the page table and MDB abstractions. We
have done most of the simulation proofs to show refinement between these levels
in other work, but we still have a small gap to fill prior to having the proofs
integrated and completed for the models described here.

5.3 Generating high performance C code

On a semantic level our concrete model is intended to be faithful to the semantics
of C as understood by our compiler, but we require a simple translation step to
turn these Isabelle/HOL definitions into C source code suitable for compilation.
This involves traversing the abstract syntax tree of the Isabelle/HOL terms for
procedures, generating real C syntax and is fairly straightforward. The number
of lines of ML code required to do this is less than 400; hence we have reasonable
confidence in this step, which might otherwise be seen as a source of soundness
concerns. The generated C source for the map-unlink example is:

extern "C" inline void

map_unlink(struct map_node* m, struct map_node* mq) {

struct map_node* nm;

nm = (map_node *)((*(mq)).map_next);

(*(m)).map_next = (word32)(nm);

if ((nm) != (NULL)) {

(*(nm)).map_prev = (word32)(m);

}

map_free(mq);

}

The generated code is suitable for passing to gcc and with the addition of
stub code in the existing L4Ka::Pistachio kernel has been linked to the kernel
and can replace the modelled part of the VM subsystem.

The investment for the virtual memory part of this verification pilot project
was about 1.5 person years. All specifications and proofs together run to about
14,000 lines. This is significantly more than the effort invested in the VM sub-
system in the first place, but it includes exploration of alternatives, determining
the right methodology, etc. Our final goal is a verified, high performance imple-
mentation of L4, and the results so far have been encouraging.



6 Conclusion

We have presented a novel way of modelling memory for imperative pointer
programs that allows us to reason abstractly and conveniently about those parts
of the program that are type safe and at the same time correctly and precisely
about those parts that are not. Both kinds of reasoning can be freely intermixed,
using a standard Hoare logic framework.

On the abstract level we can directly express language types inside Isabelle’s
type system and can therefore enjoy the advantages of type inference as well as
avoid explicit type information in specifications and invariants. While we think
our model is complete on the low level, we only have shown basic types, pointers
and structs on the abstract level. We expect more language features like tagged
unions to be expressable.

The model introduces a slight overhead for reasoning about type unsafe oper-
ations. Our experience so far in applying the technique to OS kernel verification
suggests that this is the right trade-off to make — especially since a model with
only low-level reasoning usually very quickly introduces invariants similar to our
well-formedness condition.

We showed some important aspects of verifying the VM subsystem of the L4
microkernel in which this technique was applied. We have sketched our abstract
model of address spaces with access right restrictions and shown some aspects of
refining these operations down to directly executable, high performance C code.

A nice side effect of our memory model is that reasoning about the malloc
and free library functions in C becomes possible. In an abstract setting, their
specification is easy: pointers become valid or invalid. Proving their implemen-
tation correct, however, is impossible, because they necessarily break the ab-
straction barrier. In our setting, the specification remains simple, but we are
now able to prove in the same framework that their often considerably complex
implementation satisfies this specification. We have not done so yet, but are
looking forward to taking this on as future work.
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