
ipbench – A Framework for Distributed Network Benchmarking

Ian Wienand
Gelato@UNSW

University of NSW, Sydney 2052, Australia
ianw@gelato.unsw.edu.au

http://www.gelato.unsw.edu.au
∗

Luke Macpherson
School of Computer Science and Engineering

University of NSW, Sydney 2052, Australia
lukem@cse.unsw.edu.au

http://www.disy.cse.unsw.edu.au/

Draft of 2004/12/08 16:12

Abstract

Existing network benchmark tools suffer from prob-
lems such as portability, poor repeatability and inability
to perform accurate testing of high-throughput networks.

We have built a distributed benchmarking tool which
solves many of these problems. ipbench provides an
extensible distribution framework and makes minimal
demands of the device under test. We have fully imple-
mented a latency test with many tunable parameters and
demonstrated moving other tests into the framework.

1 Introduction
ipbench is a distributed, extensible suite of tests for
gathering reliable performance data from data networks.
Presently, internet and ethernet protocols are supported,
however the addition of other protocols is feasible.

There were four main factors as driving motivators for
the creation of ipbench . The first reason was the
scarcity of recognised benchmark software in our do-
main. We require targeted, highly tunable benchmarks
that allow us to focus on evaluating the overheads of an
operating system’s handling of network packets. Many
existing benchmarks are focused on userspace or under-
lying network benchmarking rather than on the network
protocol stack and operating system implementation.

Secondly was the lack of scalability in existing tests.
Gathering performance data often requires the genera-
tion of throughputs beyond which can be generated by a
single host. To this end, some form of coordinated dis-
tributed operation is required. For example: gigabit Eth-
ernet is currently mainstream, popularity of 10 gigabit
Ethernet is growing and even faster optical technologies
exist. Generating sufficient load with small packets on
a single client is generally not possible at these speeds.
Further still, with the high speed of modern processors

∗This work is sponsored by The Gelato Foundation http://
www.gelato.unsw.edu.au and National ICT Australia http:
//www.nicta.edu.au.

overheads are often so low that useful and reliable re-
sults can only be acquired with a lot of data moving very
quickly. Whilst the problem can often be worked around
with existing tools using a combination of remote shell
scripts, regular expression code on outputs and program-
mer persistence, it was felt this was not generally a good
way to go about testing with multiple clients.

Thirdly was the API requirements of most existing
benchmark suites. The general architecture of the exist-
ing tools is to use a client—server paradigm between the
testing machines and the device under test (DUT; where
appropriate we use terminology from [1]). Whilst we
believe it is reasonable to expect the client to implement
the full range of APIs expected of a modern operating
system, this does not hold for the target device. For ex-
ample, BSD sockets may not be provided on experimen-
tal operating systems, and they may not have anything
near POSIX compatibility. Another significant require-
ment is architecture portability enabling easy testing in
varied environments.

Finally was the lack of extensibility of existing bench-
mark tools. The authors had some ideas for a number of
tests that could not easily be contained in existing net-
work performance tools. Our goal was to make it easy to
add new tests into the framework. Analysing the testing
procedure of many existing tools by source code review
is often a frustrating process, we wanted to avoid this
frustration for others as much as possible.

2 Related Work
There are a number of existing benchmark applications
that failed to meet our criteria.

At the lowest end of the scale, a tester can always use
ad hoc testing with tools such as ping (with the associ-
ated flood option) and time to get some idea of network
performance. This is not, however, accurate to any great
degree. Often researchers interested in IP performance
will construct their own small benchmarks suitable to
their work. This reduces the repeatability of their exper-

Draft: 2004/12/08 16:12 Page: 1

iments for other interested parties and raises the possi-
bility of uncertainty in test results.

NetPIPE [7] is one well known benchmark that pro-
vides latency and bandwidth results for a wide variety of
environments, one of which is TCP. The first major hur-
dle to using NetPIPE in our work was that even the latest
released version was not 64 bit safe as it makes assump-
tions about the size of unsigned long — whilst a
trivial and common problem it failed our requirement
of portability. Even with these problems fixed we saw
anomalous results (we did not fully investigate these fur-
ther and they may not have been related to NetPIPE).
Architecturally, NetPIPE is started in either a test or a
listen mode; by requiring the full application to run at
both ends of the test it also failed our API requirements.
There is also no inherent remote operation in the code.
Netperf [4] is another well-known network bench-

mark suite. Copyrights in the source code reveal it has
existed for at least 10 years and is still actively main-
tained.

Whilst Netperf is a widely used benchmark it
did not meet our requirements in a number of areas.
Netperf follows a client–server model and requires a
separate netserver process to be run on the DUT,
hence failing the aforementioned API implementation
requirements. Netperf does not have any inbuilt dis-
tribution of operation and it is not generally suited to
having multiple testers. Clever features such as running
a test multiple times to get results that satisfy a particu-
lar confidence interval unfortunately fail when used with
multiple testers as each tester lacks a global view of the
results. Netperf also lacks some features we consid-
ered necessary for measuring OS performance such as
tunable warm up and cool down periods.

SPECweb99 [8] is a common test of overall web-
server performance with a similar multiple–client/single
server architecture to ipbench , but we found it un-
suitable for a number of reasons. While SPECweb99 in-
directly tests the underlying network architecture, there
are many other variables that affect its performance.
Compontents such as choice of web server and unrelated
parts of the kernel such as disk caching and memory util-
isation code make significant contributions. It also has
a coarse grained reporting mechanism, only providing
the number of sustained connections over a time period.
Thus it fails our first requirement of giving insight at the
operating system level of network handling. It requires
a fully functioning HTTP server with a large data set on
the DUT, failing our API implementation requirements.
The test is also not freely available, which we consider
a disadvantage. This said, our experiences with the dis-
tributed client architecture of SPECweb99 has had a pos-
itive influence on our independent design of ipbench
.

Controller

Tester n

Tester 2

Tester 1

Data sent during test

Test results

Test control protocol commands

Device Under
Test (DUT)

Figure 1: Overview of the ipbench architecture. Dark
lines represent essential components of the test, lighter
lines are optional components. Medium grey lines rep-
resent data sent during the test.

Other common tools for network benchmarking are
a combination of httperf [6] and a web server such
as µserver [2, 3]. httperf requires a server ca-
pable of accepting HTTP requests and recommends the
use of multiple clients to generate sufficient and reliable
loads on the server. Some of the ideas for ipbench
came from our rudimentary patching of httperf for
synchronised remote operation. We see our work as be-
ing complementary to these tools; whilst they are excel-
lent at providing insight into the overall performance of
a kernel with something approaching realistic work (i.e.
a HTTP server) we hope to provide more details on the
network stack implementation utilised by these tools.

3 Architecture
The overall goal of ipbench is to concatenate results
from a number of synchronised remote testers each indi-
vidually performing the same test at a single DUT (see
Fig. 1).

Specifically

1. The user interacts with the controller, specifying
the test (plus any parameters) and the target ma-
chine to test.

2. The controller sets up and synchronously starts the
remote testers.

3. Testers run and complete the specified test.
4. The controller receives test results from remote

testers, aggregates the data and reports the results
to the user.

We have designed the basic architecture of ipbench
with three components: a controller, any number of
testers and a target DUT.

The testers are controlled by the controller, and exe-
cute their test procedures targeted at the DUT. On each
tester an instance of ipbenchd is started which lis-
tens for incoming test requests, sets up and performs
the test and finally relays its results to the controller.
ipbenchd is targeted at running on a fully featured
client as it may have significant memory or processing

Draft: 2004/12/08 16:12 Page: 2

requirements. Ideally the tester would have two inter-
faces — one to the controller network and one to the
DUT network, however no information is passed be-
tween tester and controller during testing so not having
this setup should not adversely affect results.

The controller is also expected to be fully featured
as it will be aggregating the data from the (potentially
many) clients.

In our earliest revisions both the testers and the con-
troller have all tests inbuilt statically. Later revisions al-
low the loading of tests via prebuilt shared objects.

We have made it possible for the DUT to execute a
“companion” testing procedure and return results as part
of the test (for example, to measure used CPU time on
the DUT). For this case, the controller will need a phys-
ical interface able to talk to the DUT and the DUT must
be running the ipbenchtd test daemon (illustrated by
the lighter lines in Fig 1). This is an optional compo-
nent and whilst it may provide useful extra information,
there is no requirement that it be used. Thus the range of
services required by the DUT varies; our existing test re-
quires nothing more than a standard echo service, other
tests may require more complex services such as HTTP.

We found this architecture to be very useful in prac-
tice; persons interested in testing can run the controller
on their local PC, receiving the result data directly and
using it as they wish. The testers, as remote daemons,
once started require no further intervention.

3.1 Protocol
The controller and clients use a simple protocol to in-
teract. A typical session begins with the controller
sending an IPBENCH SETUP message to the testers
ipbenchd daemon containing the index of the test to
run, the DUT hostname and port, and any test arguments.
Each tester responds with either IPBENCH SETUP OK
or one of two error conditions, IPBENCH SETUP ERR
or IPBENCH BUSY (if a test is already running).

If the user specifies the companion test should be run
on the DUT during testing, a similar procedure is fol-
lowed with the ipbenchtd daemon running on the
DUT.

Once all components have reported in, the controller
sends an IPBENCH START command to all testers (and
the DUT, if required). Initially, the option of passing
a timestamp or holdoff time to begin the test was pro-
posed, however during development it became clear that
the implementation of such a feature should be left to
each individual test (see the description of the warmup
and cool down periods of the latency test on page 4 for
an example). Each tester proceeds to execute its test, and
when finished marshals its results to send back to the
controller. At this point, some processing may be done
by each tester, and if one decides the test was inaccurate

for some reason (for example, the standard deviation of
results was too high) it may flag its data as invalid.

Once the controller has received return data from each
tester, if the DUT is running a companion test the con-
troller will send an IPBENCH STOP message. The
DUT will stop its test, marshal its data and send it to
the controller.

Once all data is received by the controller it is un-
marshalled, analysed and any required calculations per-
formed. Finally, the controller will output final results
ready for further analysis.

3.2 Test Interface
We designed the test interface to be as simple as possi-
ble. Such an open framework moves programming work
to test authors, but maximises the extensibility of the
program.

The interface below must be implemented by each
test1. The interface is generally straightforward,
the only moderately complex parts are the mar-
shalling/unmarshalling of arguments and the eventual
passing of arguments to the output function. By clever
use of structs and casting the resulting code can be
quite simple.

struct client_data
{

void *data;
size_t size;
int valid;

};

struct test
{
char *name; /* Test name */
int id; /* Test ID */
char *descr; /* Description */
int default_port; /* Default Port */

int (*setup)(char *hostname, int port,
char* arg);

int (*start)(struct timeval *start);
int (*stop)(struct timeval *stop);

int (*marshall)(void **data,
size_t *size, double running_time);

void (*marshall_cleanup)(void **data);
int (*unmarshall)(void *input,

size_t input_len, void **data,
size_t *data_len);

void (*unmarshall_cleanup)(void **data);

int (*output)(struct client_data *target,
struct client_data data[],
int nelem);

Draft: 2004/12/08 16:12 Page: 3

struct test_target_code *target_code;
};

The setup(), start() and stop() functions
should behave as their names imply. The arguments to
start() and stop() should be timestamped by the
functions, the difference is passed to marshal() as the
running time argument of the test; this may be use-
ful for calculations before sending back to the controller.

The client’s marshal() should wrap up all data for
sending back to the controller into its data argument.
The client may do some analysis of its data and if it de-
cides that the results are outside predefined limits may
return a non-zero value to flag the testing data as invalid.
The test should always marshal some data no matter how
invalid — the information is still useful for debugging.
Companion cleanup functions are provided to facili-
tate freeing of dynamically allocated memory.

The target code pointer points to a structure very
similar to the test structure which specifies that the
companion test to be run by the DUT target daemon. At
runtime, if the user specifies the companion test should
be executed on the DUT (with the --target command
line switch) it will be started, stopped and queried simi-
lar to a test client.

The controller will receive the data from each client
and pass the data to the unmarshal() function; stor-
ing the result in an array (struct client data
data[]). The output() function is called with this
array, a count of how many elements are in that ar-
ray and, if available, results from the DUT compan-
ion test (struct client data *target). The
output() function thus has all the data from each
client, and should analyse this information and construct
output in a format suitable for further analysis.

The valid flag of the client data struct will
only be set for data that was flagged as correct by the
marshal() functions; it is up to output() to decide
on the overall validity of the test in some form or another.
It may choose to ignore some invalid values, however if
it decides all of the test data is outside acceptable param-
eters it may return a non-zero value and the test will be
rerun up to a number of times (as given by the user with
--test-retries).

4 Tests

4.1 Latency

The first test instrumented with our tool was a latency
test. The standard method for measuring latency is to
send a short request to the DUT and await a reply for
that request, measuring the time delta. Our test requires
only a standard echo service to get this information.
The crucial part of the test occupies a single function of

Argument Description Default
bps|Mbps Throughput to attempt 10Mbps
size Size of messages in bytes 100
nodelay Set TCP NODELAY yes
bufsiz Send and receive buffer size OS Default
warmup Warmup time in seconds 5s
cooldown Cooldown time in seconds 5s
socktype Socket type (TCP/UDP/RAW) TCP
sockopts Socket Options
iface Interface to use (RAW only) eth0
drop Time before considering UDP

packet dropped in seconds
2s

Table 1: Tunable parameters for the latency test

around 60 lines of C code. It is a single threaded test
utilising non-blocking IO.

The test has a number of tunable parameters as shown
in Table 4.1. We have not found any other network test-
ing tool that makes it as straightforward to measure la-
tency at varying throughputs, and we feel this is a major
advantage of our tool.

The test works with each client recording a large num-
ber of individual latency samples (statically selected at
compile time). For each sample a packet of size is sent,
and when that packet is received the latency (elapsed
time) recorded. The typical size of a result during our
testing was a total of ∼ 10MiB (7 clients with 200,000
individual latency results, each a 64–bit integer).

Throughput control is achieved by keeping track of
the number of packets actually sent versus the number
required to be sent to achieve the specified throughput
bps. In the situation where the DUT is falling behind
(i.e. not responding fast enough) the client will simply
sustain sending packets at the requested throughput. In
the advent the client gets ahead, it will busy loop un-
til required to send the next packet, effectively throt-
tling itself. We found this method more reliable than
putting the process to sleep whilst waiting to send the
next packet.

Each client will calculate the actual throughput it
achieved and report this figure in its results. Ideally, this
will be within a few percent of the requested throughput
– if it is not it indicated the DUT could not keep up with
the requests.

To handle UDP (where guarantees are not made about
packet delivery) a high performance method of calculat-
ing dropped packets was required. For this we imple-
mented the drop parameter which influences the length
of an outstanding packet list. As we know the packet
size and the throughput, we can work out the length
of the packet list required for a given drop value. Fig-
ure 2 illustrates the process. By keeping a sequen-
tial index in each echoed packet and a head of the
queue pointer, any unreceived packets with indexhead−

Draft: 2004/12/08 16:12 Page: 4

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

9 3 4 5 6 82 7

1 3 4 5 6 82 7

1 3 4 5 62 7

Packet List Length

Figure 2: An example of filling the packet list to handle
UDP packets. Numbers represent index of sent packets.
Filled boxes represent the packet list head pointer.

indexreceived ≥ packet list length are considered
timed out and dropped.

RAW packets are created by simply packing a specific
protocol header, source and destination MAC address
and a 64 bit stamp into a Ethernet frame. By utilising
RAW packets the IP stack of the operating system should
be bypassed, giving a direct reflection of the latencies
incurred by the driver and underlying network. The re-
ceiving end must implement an echo service which takes
any Ethernet frame with the specific protocol code and
swaps the source and destination addresses and sends the
frame back. The only requirement for running a raw test
is that the target must be passed as a colon deliminated
MAC address, rather than a hostname/IP address.

Warmup and cooldown times are critical to allow both
the DUT and the network time to stabilise before run-
ning the test. Each client will run for the warmup time
before starting to take latency results, and will continue
to run without taking results for the cooldown time. This
amortises any slight overlapping of clients starting and
stopping their measurements.

The DUT can also be requested to keep track of its
CPU usage thanks to a modified version of cyclesoak
[5]. System usage is calculated with a low priority pro-
cess that “soaks” all available idle usage. The CPU mon-
itor will not record results during the warmup period,
and discards any results taken in the last cooldown sec-
onds from the time it is told to stop.

4.1.1 Test Examples

Some examples of data collected with the latency test
are presented in Fig 3.

These examples were collected while testing the rel-
ative performance benefits of varying interrupt holdoff
times for a network card driver. Interrupt holdoff de-
scribes the amount of time to wait before delivering an-
other interrupt to signal an incoming packet. This al-
lows the kernel to process more of the already received
packets before being interrupted to handle any new ones,
increasing throughput. The corollary is that latency
(amount of time to respond) goes up, as the network card
is deliberately holding back processing of packets.

The latency test can also be used to indirectly mea-

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600 700 800 900

M
in

im
um

 la
te

nc
y

(µ
s)

Applied load (Mbps)

0µs holdoff
100µs holdoff
200µs holdoff

Polling

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500 600 700 800 900

M
ed

ia
n

la
te

nc
y

(µ
s)

Applied load (Mbps)

0µs holdoff
100µs holdoff
200µs holdoff

Polling

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 100 200 300 400 500 600 700 800 900

M
ax

im
um

 la
te

nc
y

(µ
s)

Applied load (Mbps)

0µs holdoff
100µs holdoff
200µs holdoff

Polling

Figure 3: Minimum, median and maximum latencies
for varying interrupt holdoff times, as measured by the
ipbench latency test.

Draft: 2004/12/08 16:12 Page: 5

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900

A
ch

ie
ve

d
th

ro
ug

hp
ut

 (
M

bp
s)

Applied load (Mbps)

0µs holdoff
100µs holdoff
200µs holdoff
Polling

Figure 4: Achieved throughput for varying interrupt
holdoff times, as measured by the ipbench latency
test.

sure throughput (Fig. 4). Each client reports the actual
throughput it achieved for each run, and these can be
summed to get a measure of the total throughput for the
network card. Measuring throughput like this requires
multiple runs, each time increasing the throughput re-
quested from each client.

4.2 Discard Test
The discard test is similar to the latency test, however the
round trip time of the packets is not considered. At the
DUT end, a special kernel module that simply counts
the incoming packet and discards it is run. These val-
ues are reported back by the ipbenchtd invocation on
the DUT. The clients collectively count their outgoing
packets, and at the end of the test the two figures are
compared to give a reference of how many packets were
dropped.

4.3 tbench Throughput test
We have instrumented Andrew Tridgell’s tbench (a
subset of the dbench test [9]) as a form of throughput
test. This test requires a fully featured DUT as it must
run the dbench echo program.

Each of the clients runs the tbench test much as
it would if run “out of the box”; however we have the
added advantage that we can easily synchronise many
distributed clients. The controller aggregates all results
to give a total throughput.

This benchmark has not been extensively tested in this
environment, however it was mostly instrumented as a
proof of concept of our overall API architecture. It re-
quired less than a day of coding, and we feel it illustrates
the flexibility of our approach.

4.4 Further Tests and Future Work
We have a number of ideas for further tests under various
stages of construction.

• An explicit throughput test as either an expansion

of the tbench test or re-implementing with some-
thing else.

• A SPECweb99 style HTTP server test. This would
be a test that stresses a webserver.

• A distributed NFS benchmark where many clients
can stress a single fileserver.

5 Experiences from implementation
After implementation, we have identified a number of ar-
eas where our implementation has succeeded and a num-
ber that require further thought.

5.1 Modularisation of tests
Allowing a fairly straight forward API for implementing
a new test was a success and allowed rapid development
and tweaking of tests.

5.2 Remote Invocation Protocol
During ongoing use it became apparent that it would be
useful to bypass direct invocation by the controller and
have the ability to manually interact with clients. This is
not possible with the binary protocol ipbench imple-
ments. A simpler architecture is one such as that used by
SPECweb99 where each client simply exports a control
interface that is equally well utilised by the controller
or a telnet session (assuming one knows the correct
sequence of commands to send!).

Another important factor in designing the protocol,
especially during early development, is versioning. By
making part of the protocol include a version stamp you
can avoid the “Murphy’s Law” case of mixing different
development versions of clients and servers.

One criticism might be that we have implemented
a protocol that could be realised with existing tech-
nologies such as RPC, CORBA, MPC or XML-RPC.
These protocols tend to be aimed at at transferring com-
plex states between distributed applications, something
ipbench is not overly concerned with. The added
complexity these protocols bring was decided to out-
weigh their advantages.

5.3 Error reporting
In a distributed system, reporting errors from many
clients back to the controller is an important consider-
ation. ipbench does not always handle this case well.
Some way of flagging global exceptions and recovering
all clients to a stable state is required for consistently
reliable operation even after failure.

Additionally, ipbench was developed around a
fairly ad-hoc state machine mostly designed in our
heads. Formalising and implementing a state machine
for client operation more concretely would also have
helped with handling error conditions.

Draft: 2004/12/08 16:12 Page: 6

5.4 Division of tasks within the test

One area of partial success and partial failure is the divi-
sion of work between the framework and the individual
tests. For example, requiring data be marshalled into a
simple array of bytes sent over the wire to the controller
for unmarshalling was a successful design idea, as both
test and client code was simplified by the assumption.

However, our initial design of having client code sig-
nal to the test to end after a specific period of time was
not as successful. Not all tests run for a constant speci-
fied period of time; often they will be measuring the time
to do a set amount of work. Those that do run for a con-
stant time can easily implement their own alarm/signal
handler to stop themselves, possibly taking timeout vari-
ables in their argument.

It is difficult to glean these insights before developing
the tool, especially with the relative lack of prior work
to go from.

5.5 Choice of language

C was probably the wrong choice of language for the
ipbench daemons. The work they do is mostly con-
fined to setting up communications (via sockets) and
processing protocol commands. Many current script-
able languages such as Perl and Python make these sorts
of tasks almost trivial with inbuilt libraries and simple
string manipulation options.

However, writing tests in C is the correct choice. Tests
such as the latency test are extremely performance sen-
sitive, especially with regards to system calls. In this
case the inbuilt convenience libraries of the scriptable
languages become a liability as they often introduce un-
acceptable overheads. C also makes it straightforward to
wrap existing tests (largely already written in C) into the
ipbench framework.

6 Conclusion

We identified a number of problems with existing net-
work benchmark suites such as lack of scalability, API
requirements and portability concerns. We have im-
plemented a new distributed testing framework which
avoids these problems. We have fully implemented a
latency test that has a number of unique options such as
easily tunable throughput control and demonstrated eas-
ily extending the test. We have also demonstrated the
ease of porting an existing test into the framework. At
this time, our work is ongoing.

6.1 Code Availability

The code and documentation for ipbench is available
at http://ipbench.sourceforge.net. It is re-
leased under the GPL.

References
[1] Scott Bradner and Jim McQuaid. RFC 2544: Bench-

marking methodology for network interconnect de-
vices, March 1999. Status: INFORMATIONAL.

[2] Tim Brecht and Michal Ostrowski. Exploring the
performance of select-based internet servers. Tech-
nical Report HPL-2001-314, Hewlett Packard Lab-
oratories, December 07 2001.

[3] Abhishek Chandra and David Mosberger. Scalabil-
ity of Llinux event-dispatch mechanisms. Technical
Report HPL-2000-174, Hewlett Packard Laborato-
ries, December 21 2000.

[4] Rick Jones. Netperf — a network per-
formance benchmark. Available at
http://www.netperf.org/netperf/
NetperfPage.html, cited Nov 2003.

[5] Andrew Morton. cyclesoak — a tool for measuring
system resource utilisation., December 2003. Avail-
able from http://www.zipworld.com.au/
˜akpm/linux/.

[6] David Mosberger and Tai Jin. httperf - A tool
for measuring web server performance. Technical
Report HPL-98-61, Hewlett Packard Laboratories,
March 30 1998.

[7] Quinn Snell, Armin Mikler, and John Gustafson.
Netpipe: A network protocol independent perfor-
mace evaluator. In IASTED International Con-
ference on Intelligent Information Managment and
Systems, June 1996.

[8] Specweb99 whitepaper. Available at
http://www.specbench.org/web99/
docs/whitepaper.html, cited Jun 2004.

[9] Andrew Tridgell. dbench, May 2004. Available
from http://samba.org/ftp/tridge/
dbench/.

Notes

1. Later versions implement tests as loadable shared ob-
jects and use a slightly updated structure with some extra
header information.

Draft: 2004/12/08 16:12 Page: 7

