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Abstract. We extend the range of security policies that can be guar-
anteed with proof carrying code from the classical type safety, control
safety, memory safety, and space/time guarantees to more general secu-
rity policies, such as general resource and access control. We do so by
means of (1) a specification logic for security policies, which is the past-
time fragment of LTL, and (2) a synthesis algorithm generating reference
monitor code and accompanying proof objects from formulae of the spec-
ification logic. To evaluate the feasibility of our approach, we developed
a prototype implementation producing proofs in Isabelle/HOL.

1 Introduction

Proof carrying code (PCC) [1] is inherently trustworthy, independent of its origin
or previous opportunities for tampering. The guarantees provided by PCC are,
however, not universal: they are relative to a security policy agreed upon by the
code producer and consumer. It is the code producer’s obligation to annotate
the code with a proof object that establishes the code’s compliance with the
security policy. This proof object, consisting of steps in a formal logic, can be
checked with a simple proof checker. Thus, the trustworthiness of the code can
be established with mathematical rigour.

Existing research into the generation of proof-carrying code focuses on secu-
rity policies which can be derived from properties of high-level languages and
their type systems, such as type safety [2], control and memory safety [3], and
space/time guarantees [4]. The contribution of this paper is to extend the ap-
proach to more general security policies, such as general resource and access
control. An example of such a policy is one where “a user may perform an op-
eration only if they have been granted a capability for that operation and that
capability hasn’t been revoked.” Such properties are beyond the semantic guar-
antees of high-level languages; hence, we need (1) a formal device to express such
policies and (2) a method for generating proof-carrying code for these policies.
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To address Point (1), we introduce a fragment of LTL [5] lacking the usual
future operators (until and next), which we call propositional pure-past tem-
poral logic (P3TL), as a specification logic for security policies in Section 3.
P3TL can express a wide range of security policies, while enabling the auto-
matic synthesis of reference monitors [6] that enforce P3TL policies. This sec-
ond property is key to solving Point (2). More precisely, in Section 5, we will
give an algorithm to synthesise, firstly, a reference monitor checking a given
P3TL policy, and secondly, a proof object demonstrating that the reference
monitor code indeed meets the policy. Such a reference monitor in conjunction
with a framework to constrain application code to abide by the rules of a ref-
erence monitor is sufficient to produce PCC for P3TL policies. To be complete,
this framework must also provide machine checkable proof that the application
code cannot subvert the reference monitor. We introduced one such framework
based on hybrid sandboxing accompanied by a proof in the theorem prover Is-
abelle/HOL in previous work [7]. We will describe this set up in more detail in
Section 2.

The proof of compliance of synthesised reference monitors is in a Hoare-like
logic discussed in Section 4 and formalised in Isabelle/HOL. We implemented a
prototype synthesis tool in Isabelle/HOL to demonstrate the practical feasibility
of our approach.

In summary, our specific contributions are these:
– a formalisation of a simple language and program logic for reference monitors

(Section 4); and,
– a synthesis algorithm for reference monitors and proof objects from P3TL

formulae (Section 5).
In contrast to previous work on generating reference monitors from temporal
logics, we simultaneously generate a proof object that demonstrates that the
generated code enforces the security policy. We discuss related work further in
Section 6.

2 Our Approach

Fig. 1 shows an application scenario in which our technique is useful. Assume
a code producer generating a PCC program, certified for some policy φ. The
code consumer, however, requires a stronger policy, ψ, where the additional
guarantees of ψ over φ are beyond those that can be directly included during
PCC generation. The method introduced in this paper enables the synthesis of
a reference monitor for ψ; this can then be inserted into the PCC program,
possibly by rewriting parts of the application, to bridge the gap between φ
and ψ. This paper presents an algorithm for synthesising such monitors with
matching proofs. In previous work [7], we showed how such a monitor can be
integrated into an existing application in the special case where that existing
application does not use PCC at all; i.e., φ is empty. The general case, de-
picted in Fig. 1, where two policies need to be integrated is left for future work.
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Fig. 1. A possible application of our approach: generate a monitor for the stronger
policy ψ and insert it into the application. This paper presents the monitor and proof
synthesis component.

2.1 The Monitor Environment

We require that the surrounding PCC infrastructure ensures the monitor invari-
ant, containing assertions about the monitor state, be maintained outside the
monitor; in a typical system, we expect the monitor state to be hidden from
the rest of the system, either through a module mechanism or through general
memory safety — the latter is the option we explored in [7]. If a to be secured
operation occurs outside the monitor, the invariant will, in general, be invali-
dated — this will be detected at proof check time, and the program rejected.
Of course, it is perfectly valid for there to be secured operations outside the
monitor if the outside code can ensure that the invariant is maintained and that
assurance is reflected in the code’s proof annotations.

2.2 The Prototype

We have implemented a prototype synthesis tool. The tool generates an Isabelle
theory file containing both the monitor code and proofs. The tool is Isabelle-
specific, however we expect an implementation for another logical framework
to have many similarities. The prototype, along with the Isabelle theory file, is
freely available.1

While we make extensive use of Isabelle, we have been careful to ensure that
there is no intrinsic reliance upon any particular feature. In the generated proofs,
we avoid, where possible, use of Isabelle’s automated tactics, using them only
when the lemma to be proved is Isabelle-specific. This includes, for example,
lemmas relating to substitution: because we make use of the meta-logic’s sub-
stitution (we use a shallow embedding for the assertion logic), the proof will be
Isabelle-specific, and thus no general proof is available. Conversely, the moni-
tor’s proof obligations are independent of the particular meta-logic, and so we
use individual proof rules for the main part of the proof.
1 http://www.cse.unsw.edu.au/~sjw/papers/synthesis.html

http://www.cse.unsw.edu.au/~sjw/papers/synthesis.html
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3 Policy Logic

In this section we introduce the logic we use for describing security policies.

Example 1. Consider a simple version of the Chinese Wall security policy[8]

A user may access files for any client, but once they have done so, they
may only access files for that client.

Given an operator which denotes "at some time in the past", this policy may
be expressed as2

access(f) ∧ f ∈ C −→ ¬(access(g) ∧ g /∈ C)

which states a policy equivalent to the one above: access to an object belonging
to a client is allowed only if at no point in the past has the user accessed an
object belonging to another client.

Example 2. Now consider a policy modelling a capability system

A user may perform an operation only if they have been granted a ca-
pability for that operation and that capability hasn’t been revoked.

We may encode this policy as follows

operateo −→ ¬ revokeo S granto

where ψ S φ means φ was true at some point in the past, and ψ ever since.

These policies, like many others, express properties over a series of events: the
first policy that some event had not occurred in the past; the second policy that
some event had occurred, and in the meantime another had not.

Given our general goal of synthesising reference monitors, our policy logic
needs to fulfill two requirements: (1) we must be able to use reference monitors
to implement all policies that are expressible in the logic and (2) the logic must
be powerful enough to express common policies, such as those above.

The latter means that the logic must be able to express properties over be-
haviours of the program, not just over individual states. The former means that
the logic should express safety properties only, as liveness properties cannot be
implemented by reference monitors [6].

These two requirements still leave some choice. We have settled on the safety
fragment [5] of propositional linear temporal logic (LTL); for the remainder of
the paper we will denote this fragment propositional pure-past temporal logic
(P3TL). As the name signifies, this is a propositional logic containing temporal
operators that refer solely to previous worlds. The logic differs from traditional
temporal logics in that it lacks the usual future (until and next) operators — a
formula ψ in P3TL is equivalent to � ψ in the LTL of Manna and Pnueli [5]. A
similar logic (ptLTL) is used by Havelund and Rosu [9].
2 In this section, to simplify the formalisations, we are a little loose with syntax.
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〈σ, n〉 |= « a» = a σ[n]

〈σ, n〉 |= ϕ [⇒] ψ = 〈σ, n〉 |= ϕ −→ 〈σ, n〉 |= ψ
〈σ, n〉 |= ϕ S ψ = ∃ i≤n. 〈σ, i〉 |= ψ ∧ (∀ j∈(i..n]. 〈σ, j〉 |= ϕ)
〈σ, n〉 |= ϕ = n �= 0 −→ 〈σ, n - 1〉 |= ϕ

Fig. 2. Semantics of P3TL

A more powerful logic, such as a first-order variant of P3TL, would enable
more policies and more succinct versions of those already mentioned. Unfortu-
nately, synthesising reference monitors for these logics is much more difficult than
for P3TL — the state space for P3TL is fixed, while that of a first-order logic
is potentially unbounded. We leave extension of our system to more powerful
logics as future work.

The following is the syntax of P3TL

form ::= « atom» | form1 [⇒] form2 | form1 S form2 | form

The logic consists of atoms and the operators implication, since, and weak pre-
vious. Implication is the usual binary operator; to distinguish it from that of
HOL, we write ϕ [⇒] ψ. The syntax for the since and weak previous operators
is standard.

The definition of P3TL is parameterised over the type of states; atoms are HOL
predicates on such states. Our implementation of P3TL is then a deep embedding
into Isabelle/HOL, but uses a shallow embedding for atomic propositions.

Example 3. A traditional state space would be a tuple or record of variables.
The predicate «λs. x s = 7» then, for instance, states that the variable x in
record s should have value 7.

The following gives the definitions for the other propositional connectives (nega-
tion, conjunction, disjunction, etc.) as well as the usual temporal operators:
strong previous ( ϕ), once ( ϕ), and so-far ( ϕ). The two previous operators
(strong and weak) differ only at the initial state: ϕ is false and ϕ is true. In
particular, ⊥ is true only at the initial state.


 = «λs. True» ϕ = [¬] ( ([¬] ϕ)) (Previously)
⊥ = «λs. False» ϕ = 
 S ϕ (Once)
[¬] ϕ = ϕ [⇒] ⊥ ϕ = [¬] ( ([¬] ϕ)) (So-far)
ϕ [∧] ψ = [¬] (ϕ [⇒] [¬] ψ) ϕ [∨] ψ = [¬] ϕ [⇒] ψ

Fig. 2 gives the semantics of P3TL using an indexed model 〈σ,n〉. The first
element, σ, is a sequence of worlds, and the second, n, is the index of the current
state.

An atom « a» is valid in 〈σ,n〉 iff the function a maps the n-th state in σ

(denoted σ[n]) to true. An implication is valid iff the validity of the premise
implies the validity of the conclusion at the same index n. The formula ϕ S ψ

is valid at 〈σ,n〉 iff ψ was valid at some earlier state i and ϕ was valid at all
states j from i to n. The weak previous operator ϕ is valid iff there is either no
previous state (n = 0) or ϕ was valid at index n - 1.
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4 A Language and Logic for Reference Monitors

4.1 The Programming Language

This section describes the language we use for reference monitors. It is a sim-
ple imperative if-while language, using Isabelle/HOL’s functions for expressions.
Whilst it is usual in expositions on proof-carrying code systems to use a very
low-level language (e.g., an assembly language), we chose this comparatively
high-level language to simplify the presentation; issues such as memory alloca-
tion are orthogonal to the contribution of this work and would only obscure the
central points. We expect that low-level languages will present few additional
theoretical hurdles — indeed, Barthe et. al. [10] note that, in the absence of op-
timisations, transformation to a low-level language preserves proof obligations.

The syntax of programs is shown below. The nonterminal basic denotes func-
tions from states to states, bexp functions from states to booleans, and form
P3TL formulae.

stmt ::= Do basic | stmt1 ; stmt2
| IF bexp THEN stmt1 ELSE stmt2 FI | WHILE bexp DO stmt OD
| Secure form

As with P3TL, the syntax is parameterised over the states of the program.
The Do statement provides the means to model assignment and simple state
transformations directly as HOL functions. The Secure statement represents the
operation to be secured, abstracting away from the particular operation’s se-
mantics. It is parameterised by a P3TL formula representing the security policy.

Example 4. The followingmonitor checks the Chinese Wall policy from Example 1

IF (λs. ∃ f. access s f ∧ f ∈ C) THEN
IF (λs. seen s = 1) THEN

Do (λs. s(|error := 1|))
ELSE

Secure ψ

FI
ELSE

Secure ψ

FI

The state variable seen records whether we have previously seen a conflicting
access — the code to maintain this is omitted. The expression s(|error := 1|)
updates error in record s.

The states over which the language operates are tuples (s, σ), where s is
the program state, usually modelled as an Isabelle record3, and σ a sequence
3 As we use the Do statement to model assignment, taking a state update function as

an argument, there is no requirement that a record is used — it merely simplifies
use of the language.
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s −t→ s’

(s, ss) −Do f→ (f s, ss)

s −e→ t t −e’→ s’

s −e; e’→ s’

b (fst s) s −e→ s’

s −IF b THEN e ELSE e’ FI→ s’

¬ b (fst s) s −e’→ s’

s −IF b THEN e ELSE e’ FI→ s’

¬ b (fst s)

s −WHILE b DO e OD→ s

b (fst s) s −e→ t t −WHILE b DO e OD→ s’

s −WHILE b DO e OD→ s’

s’ = (if (s, ss) |= ϕ then (s, ss @ [s]) else arbitrary)

(s, ss) −Secure ϕ→ s’

Fig. 3. Semantics of programs

representing a trace of previously seen states. This trace serves as the model
when checking P3TL formulae; it records the state at security events only, not all
state changes in the program. Note that the trace is only required for reasoning
about policies and does not appear at runtime.

In monitoring P3TL policies, we interpret the validity of formulae relative to
the current state, that is, the last state in the sequence. We thus use an anchored
interpretation [11]. Satisfaction of P3TL formulae by a program state is then

(s, σ) |= ϕ = 〈σ @ [s], |σ|〉 |= ϕ

Fig. 3 shows a big step semantics for our language. The semantics are stan-
dard [12], apart from the Secure statement: the effect of Secure ϕ is to record
the current state in the state history. Execution of Secure ϕ is only defined,
however, when the current state satisfies the security policy ϕ.

A full implementation of our system would replace the Secure statement by, for
example, a system call statement. Again, modelling the behaviour of system calls
is orthogonal to the aims of this paper; the much-simplified Secure is sufficient.

4.2 The Program Logic

So far we have defined a logic for policies and a language to implement reference
monitors. This section introduces a logic for reasoning reasons about programs
that allows us to formally verify that safety policies are respected.

The rules of this Hoare-like program logic are shown in Fig 4. The triple � {P}
T {Q} denotes that a statement T that starts execution in a state satisfying P and
terminates will finish in a state satisfying Q. Both P and Q are assertions, that is,
HOL predicates on states.

As with the semantics in Sect. 4.1, the proof rules are standard apart from the
Secure statement. We have one rule for each syntactic construct and the usual
rule of consequence.



118 S. Winwood, G. Klein, and M.M.T. Chakravarty

�

� λ

� �
�

� λ ∧ � λ ∧ ¬

�

� λ ∧ λ ∧ ¬

�

∀ −→ ∀ −→ �
�

∀ −→ |= ϕ ∀ −→

� ϕ

Fig. 4. A Hoare-like logic for the programming language

The new rule for Secure demands that all states that satisfy the precondition
be models of the security policy ϕ; this check links the assertion logic to P3TL,
the policy logic. In addition, the rule’s postcondition reflects the effect of Secure
on the program state, i.e. recording the event in the trace.

Following the standard practise [12] of using a shallow embedding of asser-
tions into Isabelle/HOL means that we can take direct advantage of Isabelle’s
tactics and libraries to reason about programs. The assertion logic and program
expressions, however, are more powerful than strictly required4.

We have shown this Hoare-logic to be sound in the following sense.

Theorem 1. If � {P} e {Q} and P s and s −e→ s’ then Q s’.

Note that our definition of the semantics of Secure ensures that programs cannot
get stuck because of policy violation. The only reason that there might be no s’
such that s −e→ s’ in this theorem is non-termination of while loops.

5 Synthesis

In this section we discuss the synthesis algorithm; that is, the algorithm that
takes a P3TL formula and emits a reference monitor which enforces the policy,
and a proof that the generated monitor does indeed enforce the policy.

We will use the example policy

(« λs. x s = 1» ) [⇒](« λs. x s < 5» S «λs. y s = 1» ) (*)

4 We also have a deep embedding for all logics. We use the shallow embedding as it
is much briefer and clearer: the interaction between the assertion logic and P3TL,
although non-trivial, is not the main focus of this paper.
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as a running example throughout this section. Although this example has no
correspondence to a real-world policy (even a small such policy would be too big
for the limited space available), it contains enough complexity to be of interest.

5.1 Checking P3TL Satisfaction

In the synthesis of P3TL formulae, the following definition is required

Definition 1. The past formulae of a formula are sub-formulae

1. of the form φ S ψ; or
2. that occur after , e.g. ψ in ψ.

The number of sub-formulae is linear in the size of the formula.

Example 5. The past formulae for our example policy (*) are « λs. x s = 1»
and «λs. x s < 5» S «λs. y s = 1» . Terms in our examples which relate to
these formulae will have suffixes 0 and 1, respectively. For example, state_0 is
Σ«λs. x s = 1» .

Note that a since formula may be unfolded according to the equality:

φ S ψ = ψ [∨]((φ S ψ) [∧] φ)

Applying this rule repeatedly yields a formula in which all since formulae occur
only after a operator. Thus, truth of the rewritten formula depends only on the
truth of propositions in the current world and the truth of sub-formulae in the
immediately previous world. Furthermore, note that these sub-formulae are all
past formulae.

To check if a sequence σ satisfies a policy, we start by setting all formulae of
the form ϕ to false (as per the semantics of ). Starting from the initial state,
check and record the truth of all past formulae. At the last state in σ, check the
truth of the rewritten policy, using the recorded past formulae from the previous
state.

Thus, to monitor a policy, we need only keep track of its past formulae. This
implies that we do not require an explicit representation of worlds in our monitor,
and that checking a P3TL formula can be done efficiently.

5.2 Monitor Synthesis

The algorithm for constructing a monitor for a P3TL formula is then as follows:

1. For each past formulae ψ, allocate a state bit, Σψ, which records the truth
of the formula in the previous world, i.e. Σψ ↔ ψ;

2. Construct a program fragment which checks the truth of each past formula
ψ in the current world, i.e., with respect to the current program state. When
constructing the fragment, if a sub-formula of ψ of the form φ is seen, emit
code which checks the state bit Σφ;
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IF (λs. x s = 1) THEN
Do (λs. s(|tmp_0 := 1|))

ELSE
Do (λs. s(|tmp_0 := 0|))

FI
IF (λs. y s = 1) THEN
Do (λs. s(|tmp_1 := 1|))

ELSE
IF (λs. state_1 s = 1) THEN

IF (λs. x s < 5) THEN
Do (λs. s(|tmp_1 := 1|))

ELSE
Do (λs. s(|tmp_1 := 0|))

FI
ELSE
Do (λs. s(|tmp_1 := 0|))

FI
FI

(cont.)

IF (λs. state_0 s = 1) THEN
IF (λs. tmp_1 s = 1) THEN
Secure policy;
Do (λs. s(|state_0 := tmp_0 s|));
Do (λs. s(|state_1 := tmp_1 s|))

ELSE
Skip

FI
ELSE
Secure policy;
Do (λs. s(|state_0 := tmp_0 s|));
Do (λs. s(|state_1 := tmp_1 s|))

FI

Fig. 5. Generated code for policy (*). The left hand column contains the state main-
tenance code, while the right side contains the policy checking code.

3. Construct a monitor fragment for the main formula. In the case that the
formula holds, execute the secure statement and update the monitor state,
otherwise handle the security violation; and

4. Sequentially compose the fragments to generate the final monitor.

Fig. 6 presents the algorithm for constructing a monitor fragment. The no-
tation S[[ψ]](tc,fc) denotes the algorithm applied to formula ψ, with arguments
tc (true case) and fc (false case). The leaves of the fragment, tc and fc, are
assignments in the case of a past formula, and a secure statement along with
state update in the case of the policy.

Example 6. The monitor generated for our example policy is shown in Fig. 5.
Our implementation includes an optimisation: rather than re-check a formula,
monitor fragments may refer to previously established past formula by checking
the corresponding variable.

The monitor fragment for the past formula «λs. x s = 1» (the first 5 lines
of Fig. 5) was generated by

S[[«λs. x s = 1» ]](Do (λs. s(|tmp_0 := 1|)),Do (λs. s(|tmp_0 := 0|)))

Not shown are the proof handling aspects; in our prototype, the Do statements
are functions taking a proof of «λs. x s = 1» and ¬«λs. x s = 1» respectively.
These proofs are then stored for later extraction.

If we, for the moment, ignore proof generation, the synthesis algorithm is straight-
forward: when an atom is seen, generate code which checks the atom and uses
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S[[«a»]](tc, fc) =IF a THEN (tc atomI) ELSE (fc natomI)
S[[ψ [⇒] φ]](tc, fc) = let

tc′ = λ r .S[[φ]](tc · impI1, fc · (nimpI r))
in
S[[ψ]](tc′, tc · implI2)

S[[[¬]ψ]](tc, fc) =S[[ψ]](fc · nnegI, tc · negI)
S[[ψ]](tc, fc) =IF (Σψ) THEN (tc inv-πψ) ELSE (fc ninv-πψ)
S[[ψ S φ]](tc, fc) =S[[φ [∨]((ψ S φ) [∧] ψ)]](tc · sinceI, fc · nsinceI)

Fig. 6. The algorithm for constructing a monitor fragment. It generates both a mon-
itor fragment and proof annotations. The parameters tc and fc are functions which
take proof annotations and return the statements to be used in each branch of the
conditional; the term tc · sinceI composes rule sinceI with tc, thus adding a new rule
to the proof tree at tc.

s |= ϕ

ϕ (fst s)

s |= «ϕ»
atomI

¬ ϕ (fst s)

¬ s |= «ϕ»
natomI

s |= ϕ

s |= ψ [⇒] ϕ
implI1

¬ s |= ψ

s |= ψ [⇒] ϕ
implI2

s |= ϕ ¬ s |= ψ

¬ s |= ϕ [⇒] ψ
nimplI

¬ s |= ϕ

s |= [¬] ϕ
negI

s |= ϕ

¬ s |= [¬] ϕ
nnegI

s |= ψ [∨] ( (ϕ S ψ) [∧] ϕ)

s |= ϕ S ψ
sinceI

¬ s |= ψ [∨] ( (ϕ S ψ) [∧] ϕ)

¬ s |= ϕ S ψ
nsinceI

Fig. 7. Derived introduction rules for P3TL

tc in the true case, fc in the false case; in the case of a negation, [¬]ψ, generate
code for ψ but switch the leaves — if ψ holds, then use fc, otherwise tc. Note
that negation produces no extra code; it merely swaps leaves. This means that
special cases for conjunction and disjunction are not required: unfolding the def-
initions results in no additional code; a previous formula, ψ, results in a check
of the state component for that formula, Σψ.

5.3 Proof Synthesis

The main monitor theorem is

� {invψ} monitor {invψ}

which states that the monitor preserves the invariant, discussed below. The proof
that the monitor enforces the security policy is implicit in the use of any Secure
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statements: wherever an operation occurs in the monitor, a proof obligation
is required which states that the policy holds (c.f. rule secure). Thus, as
our proof system is sound (Theorem 1), a proof of the main theorem implies
that execution of a Secure statement occurs only when the security policy is
true.

The proof of the main theorem is generated from the monitor fragments using
a verification condition generator style algorithm. The proof requires a number
of lemmas for both re-establishing the monitor invariant and for showing the
policy holds for Secure statements. The generation of these proof obligations is
discussed below.

The monitor invariant. The monitor maintains state between invocations, in
particular Σφ for each past formula φ, and so a monitor invariant is required. This
invariant relates the value of each state variable to the truth of the corresponding
formula in the previous state.

invψ ≡
∧

φ∈past(ψ)

Σφ ↔ φ

where ψ is the security policy and past(ψ) are the past formulae of ψ.
The past formula monitor fragments are then responsible for reestablishing

the monitor invariant. This is done in two steps: firstly, the monitor checks
the past formula, φ, and sets a temporary variable, Δφ, accordingly; secondly,
the monitor updates the real monitor state after execution of the Secure
statement.

This two-step process is required for a number of reasons: primarily, later
monitor fragments may require the state variable to establish the truth of other
formulae, past or policy; and, secondly, if the security policy doesn’t hold, then
the monitor may elect to silently ignore the request. In this case, the initial value
of the state variables is still correct — no secure operation is performed, and
thus the invariant is still true. This is the behaviour of monitors generated by our
prototype. We then define, for each past formula, a pre-invariant Ξφ ≡ Δφ ↔ φ.
This correspondence is used to generate the invariant — after execution of Secure
statement and state update, we can use this to derive Σφ ↔ φ

Example 7. Our prototype generates a number of auxiliary lemmas for manipu-
lating the invariant. These include

– projection rules (the inv-πφ rules mentioned in Fig. 6)

invariant (s, σ) state_1 s = 1

(s, σ) |= («λs. x s < 5» S «λs. y s = 1» )
inv-π1

– rules for invariance under assignment (X is an arbitrary function)

invariant (s(|tmp_1 := X s|), σ) = invariant (s, σ)
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Proof obligations. The proof of the main theorem requires, for each assign-
ment in each past formula monitor fragment, a proof obligation of the form

invψ ∧ Ξφ1 ∧ . . . ∧ Ξφm ∧ a1 ∧ . . . ∧ an −→ inv′
ψ ∧ Ξ ′

φ1
∧ . . . ∧ Ξ ′

φm
∧ Ξ ′

φ

A formula is primed to denote it’s truth after the assignment. The terms Ξφ1 ∧
. . . ∧ Ξφm are the past formula equivalences established by previous monitor
fragments, a1, . . . , an are the atoms (or their negation, in the case of a false
branch) that were checked by the conditionals in the current monitor fragment,
and φ is the formula from which the monitor fragment was produced, with Δφ

replaced by True or False depending on which branch the assignment occurs.
These proofs state that the monitor fragment correctly establishes Ξφ and

does not invalidate previously established equivalences or the invariant.
The obligations for Secure statements are similar but for the last term in the

conjunction: in this case, it is the policy. In addition, the secure rule allows us
to generate P3TL terms of the form φ, assuming we have φ — this is how the
conversion from pre-invariant to invariant occurs.

Example 8. The following obligation is generated for the fourth assignment in
Fig. 5.

∀ s σ. invariant (s, σ) ∧
pre_sd0 (s, σ) ∧ y s �= 1 ∧ state_1 s = 1 ∧ x s < 5 −→
invariant (s(|tmp_1 := 1|), σ) ∧
pre_sd0 (s(|tmp_1 := 1|), σ) ∧ pre_sd1 (s(|tmp_1 := 1|), σ)

Proof construction. Much of complexity of the algorithm in Fig. 6 arises
because the leaves of the tree are annotated with the proof, and the algorithm
builds the tree from the leaves up. The proofs require information that is not
initially available, i.e., the proofs for sub-formulae, so the arguments to the
synthesis function, tc and fc, are functions from proofs to program fragments.
In particular, if the fragment is checking the truth of φ, tc will be a function
from a proof of φ, and fc a function from a proof of ¬φ.

Fig. 7 shows the P3TL proof rules used by the algorithm, except for the
invariant projection lemmas which are described above. All of these rules are
derived from the semantics of P3TL (using Isabelle) as lemmas, but are intended
to be derivable in a syntactic proof system (such as that in Lichtenstein and
Pnueli [13]). Each rule occurs in the positive and negated form, as some proof
rules require negated forms of past formulae (e.g., rule ninv-πφ). Note that the
atom rules convert assertions into P3TL atoms.

The algorithm assumes these rules are available as functions which build proofs.
As the assumptions of the proof are assertions (the invariant and a1, . . . , an as
above), those rules without premises of the form s |= ψ are treated as constants,
as in the case for atoms.

In the case of an implication, ψ [⇒] φ, we construct a function tc′ which takes
as argument a proof of ψ and produces a fragment which checks φ. Note that
nimpI is partially applied to the proof of ψ in the false case; the result is a
function from ¬φ as required. The remaining cases are straightforward.
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Example 9. The following is the proof generated for the obligation in Example 8

π1
σ

σ |= ϕ

σ |= λ

¬ σ |= ¬ λ

¬ σ |= ψ

σ |= ¬ ψ

σ |= ¬ λ ⇒ ¬ ψ

σ |= ϕ

(| |) σ |= ϕ

where ψ = («λs. x s < 5» S «λs. y s = 1» ) [⇒] [¬] «λs. y s = 1» and ϕ = «λs. x
s < 5» S «λs. y s = 1» .

The above proof is generated in two steps: firstly (not shown) the previously
established facts are shown to be true after the assignment using the assignment
invariance rules described above; and secondly, shown above, the new equivalence
is established using the proof constructed by the algorithm in Fig. 6.

After the assignment (tmp_1 s = 1) = (s, σ) |= ϕ, as required.

5.4 Discussion

Tableau construction [14] algorithms give an exponential state space due to the
use of subset construction, and thus can generate monitors whose worst-case
size is exponential in the size of the input formula. Our approach, while tableau-
based, has a worst-case size that is (O(n2)) in the size of the input formula. This
size reduction is due to the past formula monitor fragments which dynamically
calculate the automata transitions. This comes at a cost, however: the time
complexity of our approach is quadratic, while that of a simpler automata-based
solution is linear in the size of the formula.

6 Related Work

Bernard and Lee [15] present a proof carrying code framework based on temporal
logic. In contrast, our system is closer to that of a traditional PCC framework —
we require temporal terms only when dealing with the high-level safety policy;
this should make extending existing programs simpler. Nevertheless, we envisage
no major issues in synthesising monitors for their framework.

Synthesis from temporal logics, traditionally used in the model checking com-
munity (e.g. Spin [16]) has gained recent popularity for constructing program
reference monitors [17,18,19].

In particular, our approach is similar to that of the PathExplorer project [9].
They construct monitors for safety properties using an algorithm that is very
close to that we presented. These monitors can then be automatically inserted
into Java programs for run-time testing. The major difference is that our algo-
rithm also generates proofs.
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Peled and Zuck [20] generate a proof from model-checking results. This proof
shows properties of the target system; in theory, we may be able to generate the
monitor and then apply their technique to generate the proof. It is, however,
unclear whether that approach would be feasible in practice.

7 Conclusions and Future Work

In this paper we introduced a temporal logic for formulating security policies
— propositional pure past temporal logic — and showed how to automatically
generate efficient reference monitor implementations that check the required
policy, along with a machine-checkable proof of their safety.

We have implemented a prototype targeting Isabelle/HOL; the majority of
formal matter, and all of the theorems, in this paper were generated using Is-
abelle’s presentation mechanism [21] from the Isabelle proofs. This means what
we show is what we proved.

The main contribution of this paper is to show how reference monitor synthe-
sis, proof generation, and the policy logic are defined and interact. In future, we
are interested in refining the system towards one in which the reference moni-
tors are implemented in a low-level language and inserted into consumer code by
binary rewriting, as demonstrated in [7]. Also desirable is a richer policy logic,
such as a first order variant of P3TL; finally, a higher-level language that can be
compiled into P3TL would ease the job of writing security policies.
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